Researchers have found that TRESK, a calcium regulated two-pore potassium channel, regulates the brain's central circadian clock to differentiate behaviour between day and night.
It was previously understood that the brain's circadian clock, otherwise known as the suprachiasmatic nucleus (SCN), depends on multiple mechanisms to ensure rhythmic electrical activity that varies between day and night. Yet, this research has clarified that TRESK plays a crucial role in this system. The mechanism was previously unknown.
The study investigated the role of TRESK in the brain's central circadian clock and found that when TRESK levels were reduced the biological rhythm was disrupted.
The brain's circadian clock is usually active during daylight and not during the night. When the absence of TRESK was explored in the study, the clock had lost its day and night association and did not sense light. This further identifies that not only does TRESK affect cell membrane activity, it affects response behaviour and the clock's communication to the body. Humans need this to perform efficiently.
The authors show that glutamate activates TRESK through NMDA and AMPA mediated calcium influx and calcineurin activation to then oppose further membrane depolarisation and rising intracellular calcium. Hence, in the absence of TRESK, glutamatergic activity is unregulated leading to membrane depolarisation, increased nocturnal SCN firing, inverted basal calcium levels and impaired sensitivity in light induced phase delays.
The author said: 'This research has shown that TRESK is key to SCN function, regulating multiple aspects of SCN neurophysiology. TRESK provides a clear delineation of light responses between the day and night. It maintains the SCN in the appropriate state for nocturnal light-induced behavioural changes. These findings are significant to future research into how the circadian clock responds to environmental stimuli.'
https://www.nature.com/articles/s41467-020-17978-9
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Ftresk-is-a-key&filter=22
A new regulator of brain's central circadian clock identified!
- 704 views
- Added
Edited
Latest News
Why episodes of low blood s…
By newseditor
Posted 30 Jan
Personalized brain modeling…
By newseditor
Posted 29 Jan
Afternoon chemotherapy impr…
By newseditor
Posted 29 Jan
Propionic acid protects ner…
By newseditor
Posted 28 Jan
How cells prevent harmful e…
By newseditor
Posted 28 Jan
Other Top Stories
Role of ion channel, Kv7.2/7.3 in ALS
Read more
Senolytics reduce coronavirus-related mortality in old mice
Read more
Cytosolic dsDNA of mitochondrial origin induces cytotoxicity and ne…
Read more
Microglial senescence contributes to Alzheimer's pathology
Read more
Nitrous oxide at low doses could be fast, effective treatment for s…
Read more
Protocols
Machine learning prediction…
By newseditor
Posted 09 Jan
Differentiating PC12 cells…
By newseditor
Posted 09 Jan
Ultrasensitive sensors reve…
By newseditor
Posted 05 Jan
In vitro-derived medium spi…
By newseditor
Posted 04 Jan
Molecular and spatial signa…
By newseditor
Posted 30 Dec
Publications
HIF-1a accumulation in resp…
By newseditor
Posted 29 Jan
Electrical signals in the E…
By newseditor
Posted 29 Jan
Parathyroid hormone recepto…
By newseditor
Posted 29 Jan
Plasma biomarker profiles i…
By newseditor
Posted 29 Jan
Chemotherapy delivery time…
By newseditor
Posted 29 Jan
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar