Previous work has pointed to diet—including protein intake—as one potential factor influencing how soundly we sleep. A study published in Cell adds evidence to the role of food by reporting that a protein-rich diet decreases the arousability of flies and mice. Furthermore, the researchers unraveled the mechanism underlying this effect in flies: dietary proteins activate cells in the gut that secrete a peptide, which signals to a group of neurons responsible for regulating response to mechanical vibrations.
The team wanted “to understand how we disconnect from all the sensory [information] when we’re sleeping,” says a coauthor. Previous research had pointed to a “strong genetic component,” so the first step in answering their question was to analyze the roles of around 3,400 fly genes. By silencing each of them using RNA interference and assessing how this affected the animals’ arousability, the team found around 160 genes resulting in hypo- or hyperarousable flies—among them, a neuropeptide and its receptor, on which they decided to focus their efforts.
The neuropeptide in question, called CCHa1, is known to be synthesized in both the brain and the gut. When researchers depleted it locally from the brain and gut, they found that its elimination in the gut was sufficient to increase arousability in flies. Since the cells that secrete it in the gut are activated by dietary proteins and amino acids, The auhtors assessed the role of food in this effect. They found that a diet supplemented with a protein mix increased CCHa1 levels in the flies’ gut and made them less responsive to vibrations while they slept. In contrast, sugar and fat supplementation did not affect either of these measures.
Finally, by searching for the population of neurons with which this peptide communicates, the team’s experiments revealed that CCHa1 is received by a subset of dopaminergic neurons in the brain that modulate responsiveness to vibrations.
Experiments in mice showed that a protein-enriched diet also made these animals more difficult to wake up in response to mechanical vibrations, although it is unclear whether the mechanism is the same as in flies. “It’s a similar phenomenon,” says the senior author of the study, “but we don’t know yet if it is the same molecules” that are involved, a question her team is currently interested in addressing.
Throughout the article, the authors describe the effect of protein intake and CCHa1 levels as promoters of “deeper sleep” in these animal models. University of Queensland neuroscientist Bruno van Swinderen, who was not involved in the study, advises caution in the use of this term. Whereas these results show evidence that protein supplementation results in an “increased arousal threshold,” this is not equivalent to deeper sleep or better sleep quality, he emphasizes. He argues that deeper sleep involves specific functions, and within this work, such functions were not assessed. The results, so far, mainly show that the animals become less responsive to stimuli, he says.
https://www.cell.com/cell/fulltext/S0092-8674(23)00165-4
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fa-gut-secreted-peptide&filter=22
A Protein-Rich Diet Helps Mice and Flies Sleep More Soundly
- 841 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Microptosis- cell death pathway to kill infected cells
Read more
Role of mitochondria in lupus
Read more
How immune cells can self-renew
Read more
How immune system maintains a memory
Read more
The neurons in our gut help the immune system keep inflammation in…
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar