Brain injuries like stroke can be debilitating and require time-sensitive treatment. Clotting factors like thrombin are commonly administered to patients, but there are many other stroke-related signs that can be targeted, such as swelling and ion imbalances in the surrounding fluids. New research shows that brain fluids can be normalized with adrenergic receptor antagonists, a combination of drugs to block the activity of (nor)adrenaline in the brain. This experimental treatment for stroke aided motor recovery and reduced cell death in mice, as reported in the Proceedings of the National Academy of Sciences.
A major consequence of stroke is an immediate imbalance in the ion concentrations of fluids that bathe brain cells. Potassium levels spike and fluid accumulates, which leads to swelling, a major cause of stroke injury. "We know that the water dynamics in the brain immediately during and after a stroke are critical, so we focused on the pathways that move fluids in and out of cells," explains lead author. One way to lower potassium and get neurons active again is by administering adrenergic receptor (AdR) antagonists, drugs that counteract the electrical and chemical disturbance that accompanies a stroke. These antagonist drugs have been found to promote fluid exchange in normal brains by another of this study's co-authors.
A cocktail of AdR blockers was successful in reducing both the area of tissue damage and potassium levels in stroked mice. Moreover, even one or two hours post-stroke, administration of AdR blockers was effective in stopping the infarct from spreading. Mice were also able to recover the use of their forepaw much more quickly when treated with AdR blockers. The researchers found that levels of a water channel called aquaporin 4 were lower following a stroke. "We think that preserving aquaporin levels is critical to protecting brain tissue during stroke," says the lead.
To test this idea, they used genetically engineered mice that lacked the aquaporin 4 water channel. These mice did not benefit from AdR blocker treatment and their brain potassium levels remained high after stroke, supporting the idea that the neuroprotective effect occurs through the action of aquaporin 4 water channels. "Keeping potassium levels in balance is an alternative therapeutic strategy for stroke, and we found that adrenergic receptor blockers promote this normalization," says the author. "Recovering motor function following a stroke is so important, and we also saw improvements in the mice treated with AdR blockers."
http://www.riken.jp/en/pr/press/2019/20190520_3/
https://www.pnas.org/content/early/2019/05/14/1817347116
Adrenergic blockers reduce brain damage after stroke
- 1,103 views
- Added
Edited
Latest News
New mutation linked to earl…
By newseditor
Posted 08 Oct
Mechanism of GSDMD pore for…
By newseditor
Posted 08 Oct
How are pronouns processed…
By newseditor
Posted 07 Oct
Skin hormone hepcidin in ps…
By newseditor
Posted 07 Oct
What hinders DNA repair in…
By newseditor
Posted 07 Oct
Other Top Stories
Interaction between uromodulin and E.coli in urinary tract infectio…
Read more
Why are memories attached to emotions so strong?
Read more
A drug reduces stroke damage by preventing potassium release from n…
Read more
Vulnerabilities involved in human tooth decay
Read more
How does the brain fold?
Read more
Protocols
Use of synthetic circular R…
By newseditor
Posted 06 Oct
The gut-brain axis in depre…
By newseditor
Posted 04 Oct
Droplet-based functional CR…
By newseditor
Posted 03 Oct
Multi-peptide characterizat…
By newseditor
Posted 24 Sep
Nanoplasmonic aptasensor fo…
By newseditor
Posted 20 Sep
Publications
Driving factors of neuronal…
By newseditor
Posted 08 Oct
TBK1-Zyxin signaling contro…
By newseditor
Posted 08 Oct
Brain repair mechanisms aft…
By newseditor
Posted 08 Oct
Mitochondria transfer-based…
By newseditor
Posted 08 Oct
The Nobel Prize in Physics…
By newseditor
Posted 08 Oct
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar