Researchers have identified three major molecular subtypes of Alzheimer's disease (AD) using data from RNA sequencing. The study advances our understanding of the mechanisms of AD and could pave the way for developing novel, personalized therapeutics. The work was published in Science Advances.
Alzheimer's disease is the most common form of dementia, but it is quite diverse in its biological and pathological manifestations. There is growing evidence that disease progression and responses to interventions differ significantly among Alzheimer's patients. Some patients have slow cognitive decline while others decline rapidly; some have significant memory loss and an inability to remember new information while others do not; and some patients experience psychosis and/or depression associated with AD while others do not.
"Such differences strongly suggest there are subtypes of AD with different biological and molecular factors driving disease progression," said the lead author of the study.
To identify the molecular subtypes of AD, the researchers used a computational biology approach to illuminate the relationships among different types of RNA, clinical and pathological traits, and other biological factors that potentially drive the disease's progress. The research team analyzed RNA-sequencing data of more than 1,500 samples across five brain regions from hundreds of deceased patients with AD and normal controls, and identified three major molecular subtypes of AD. These AD subtypes were independent of age and disease stage, and were replicated across multiple brain regions in two cohort studies.
These subtypes correspond to different combinations of multiple dysregulated biological pathways leading to brain degeneration. Tau neurofibrillary tangle and amyloid-beta plaque, two neuropathological hallmarks of AD, are significantly increased only in certain subtypes.
Many recent studies have shown that an elevated immune response may help cause Alzheimer's. However, more than half of AD brains don't show increased immune response compared to normal healthy brains. The analysis further revealed subtype-specific molecular drivers in AD progression in these samples. The research also identified the correspondence between these molecular subtypes and the existing AD animal models used for mechanistic studies and for testing candidate therapeutics, which may partially explain why a vast majority of drugs that succeeded in certain mouse models failed in human AD trials, which likely had participants belonging to different molecular subtypes.
Although the subtyping described by the researchers was performed post mortem using the patients' brain tissue, the researchers said that if the findings were validated by future studies, they could lead to the identification in living patients of biomarkers and clinical features associated with these molecular subtypes and earlier diagnosis and intervention.
"Our systematic identification and characterization of the robust molecular subtypes of AD reveal many new signaling pathways dysregulated in AD and pinpoint new targets," said the lead, "These findings lay down a foundation for determining more effective biomarkers for early prediction of AD, studying causal mechanisms of AD, developing next-generation therapeutics for AD and designing more effective and targeted clinical trials, ultimately leading to precision medicine for AD. The remaining challenges for future research include replication of the findings in larger cohorts, validation of subtype specific targets and mechanisms, identification of peripheral biomarkers and clinical features associated with these molecular subtypes."
https://advances.sciencemag.org/content/7/2/eabb5398
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fmolecular-subtyping-of&filter=22
Alzheimer's subtyping using RNA sequencing data
- 1,110 views
- Added
Edited
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Why humans develop more slowly than mice?
Read more
How a single protein in non-neuronal cells controls brain development
Read more
Brain cognitive development supported by DNA repair enzyme
Read more
Developmental atlas of human cell gene expression
Read more
Connectomic mapping in the developing cortex
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar