Brains are made of more than a tangled net of neurons. Star-like cells called astrocytes diligently fill in the gaps between neural nets, each wrapping itself around thousands of neuronal connections called synapses. This arrangement gives each individual astrocyte an intricate, sponge-like structure.
New research finds that astrocytes are much more than neurons' entourage. Their unique architecture is also extremely important for regulating the development and function of synapses in the brain.
When they don't work right, astrocyte dysfunction may underlie neuronal problems observed in devastating diseases like autism, schizophrenia and epilepsy.
The team identified a family of three proteins that control the web-like structure of each astrocyte as it grows and encases neuronal structures such as synapses. Switching off one of these proteins not only limited the complexity of the astrocytes, but also altered the nature of the synapses between neurons they touched, shifting the delicate balance between excitatory and inhibitory neural connections.
"We found that astrocytes' shape and their interactions with synapses are fundamentally important for brain function and can be linked to diseases in a way that people have neglected until now," said the senior author. The research was published in the journal Nature.
But the complexity of astrocytes is dependent on their neuronal companions. Grow astrocytes and neurons together in a dish, and the astrocytes will form intricate star-shaped structures. Grow them alone, or with other types of cells, and they come out stunted.
To find out how neurons influence astrocyte shape, a graduate student, grew the two cells together while tweaking neurons' cellular signaling mechanisms. When the neurons are killed, but preserved their structure as a scaffold, the astrocytes still beautifully elaborated on them.
"It didn't matter if the neurons were dead or alive -- either way, contact between astrocytes and neurons allowed the astrocyte to become complex," student said. "That told us that there are interactions between the cell surfaces that are regulating the process."
Searching genetic databases for cell surface proteins known to be expressed by astrocytes, three candidates that might help direct their shape showed up. These proteins, called neuroligins, play a role in building neural synapses and have been linked to diseases like autism and schizophrenia. Previously, their functions had been primarily studied in neurons.
To find out what role neuroligins play in astrocytes, the student tinkered with astrocytes' ability to produce these proteins and found that when the production of neuroligins was switched off, the astrocytes grew small and blunt and when boosted, astrocytes grew to nearly twice the size.
"The shape of the astrocytes was directly proportional to their expression of the neuroligins," the student said.
Tweaking the expression of neuroligins didn't just change the size and shape of the astrocytes. They also had a drastic effect on the synapses that astrocyte touched.
When a single neuroligin , neuroligin 2 was switched off -- the number of excitatory or "go" synapses dropped by 50 percent. The number of inhibitory or "stop" synapses stayed the same, but their activity increased.
"We are learning now that one of the hallmarks of neurological disorders like schizophrenia, autism and epilepsy is an imbalance between excitation and inhibition," student said. "Which just drives home that these disease-associated molecules are potentially functioning in astrocytes to shift this balance."
https://today.duke.edu/2017/11/star-shaped-brain-cells-orchestrate-neural-connections
Latest News
Anesthetic ketamine to treat depression?
How pathogenic gene variants lead to heart failure
A new framework for studying brain organization
Key mechanism controlling skin regeneration
Dynamic control of visually guided locomotion through corticosubthalamic projections
Other Top Stories
Linking La Niņa climate cycle to increased diarrhea
Lead exposure linked to decreased brain volume in adolescents
How psychedelics may enhance mood at mass gatherings
New insights into neurobiology of decision-making and imagination
The pheromone darcin drives a circuit for innate and reinforced behaviors
Protocols
A scalable organoid model of human autosomal dominant polycystic kidney disease for disease mecha…
An improved organotypic cell culture system to study tissue-resident macrophages ex vivo
Protocol for spike-triggered closed-loop auditory stimulation during sleep in patients with epilepsy
Spectral fiber photometry derives hemoglobin concentration changes for accurate measurement of fl…
A Microengineered Brain-Chip to Model Neuroinflammation in Humans
Publications
Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies
Treadmill exercise reduces a-synuclein spreading via PPARa
Bronchiectasis – A Clinical Review
Autism-associated chromatin remodeler CHD8 regulates erythroblast cytokinesis and fine-tunes the…
What Is Carpal Tunnel Syndrome?
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER