A research team has identified a specific cell group in the brain responsible for shifts in the sleep-wake rhythm caused by psychostimulants. A molecularly-defined cell population of the hypothalamus constitutes a point of control in the regulation of the circadian rhythm in the brain and gates the effect of psychostimulants through its activity. Through this neural mechanism, psychostimulants can cause an increase in alertness and activity, even during circadian periods of rest and sleep.
The circadian rhythm is the ability of animals to synchronize their physiological processes over a period of about 24 hours. This includes the sleep-wake rhythm as a central regulatory element. The center for controlling this brain function is located in the hypothalamus. People with irregular sleep-wake cycles, whether due to nocturnal activity or jet lag, often use psychostimulants to compensate the circadian shifts and correct their sleep rhythms.
The research team has now been able to identify a molecularly defined cell group (Th+/Dat1+) in the hypothalamus that is responsible for the circadian changes in activity patterns triggered by psychostimulants. Some people with chronic disturbances of their daily rhythms, such as pilots, are known to use the psychostimulant amphetamine in order to be able to stay awake and be active even during their biologically predetermined rest periods. The new study by the team now tested and characterised this effect in a mouse model.
To this end, chemogenetic, optogenetic and behavioral methods were used to identify the group of cells in the hypothalamus that respond directly to the stimulants. The research team further revealed the functional circuitry in which these cells are embedded. They were able to identify the lateral septum, an area of the brain that regulates autonomic processes and is involved in the control of locomotion, as another important brain area involved in the regulatory processes induced by amphetamines.
"We could define a new region of the brain that is the lateral septum, which is involved in circadian rhythms via activity of dopamine receptors, where psychostimulants can exert their stimulatory effects. If the receptors there are inhibited or stimulated, it directly influences the activity of the organism," the author explains.
"Our new findings on the modulatory modes of the circadian rhythm offer starting points for new research on the functional effects of psychostimulants," adds another author, "With the identification of the receptors in the lateral septum, we open up a novel possibility for the development of new therapeutic approaches for the treatment of diseases associated with hyperactivity or shifts in circadian activity patterns
.
https://www.nature.com/articles/s41467-022-33584-3
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fa-hypothalamic-dopamine&filter=22
Brain cells identified for regulation of sleep-wake rhythm
- 741 views
- Added
Latest News
Humans can intermittently r…
By newseditor
Posted 04 Dec
Why young kids don't get se…
By newseditor
Posted 04 Dec
Phosphatidylinositol 3,5-bi…
By newseditor
Posted 04 Dec
Probiotic-guided CAR-T cell…
By newseditor
Posted 04 Dec
Cell atlases of the human b…
By newseditor
Posted 04 Dec
Other Top Stories
A well-known plant substance slows down aggressive eye cancer
Read more
Protein BRCA1 keeps neuroblastoma stable
Read more
Kinase-phosphatase ratio linked to pancreatic cancer survival
Read more
High-fructose corn syrup promotes colon tumor growth in mice
Read more
Brain tumor grows for 2-7 years before detection
Read more
Protocols
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Publications
Behavioral and brain respon…
By newseditor
Posted 04 Dec
Toward low-cost gene therap…
By newseditor
Posted 04 Dec
The bidirectional immune cr…
By newseditor
Posted 04 Dec
Leveraging human immune org…
By newseditor
Posted 04 Dec
Single-cell long-read seque…
By newseditor
Posted 04 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar