Recent research shows that our brain declines later than previously thought. Instead of after our 25th year of life, it happens when we are between the ages of 30 and 40. The researchers published their results in Nature Neuroscience.
The researchers discovered, among other things, that the connections in our brain become increasingly faster: from two meters per second in children aged four to four meters per second in people aged between thirty and forty. A doubling, in other words. Only after that age does it slow down. "Our brain continues to develop a lot longer than we thought," the lead author said.
The researchers also see differences between brain regions. The frontal lobe, the front part of our brain responsible for thinking and performing tasks, develops longer than an area responsible for movement. The author explains, "We already knew this thanks to previous research, but now we have concrete data." The development of speed is not a straight line, but rather a curve.
The researchers obtained the data by making precise measurements using an electrode grid that some epilepsy patients get placed on their brain (under the skull) in preparation for epilepsy surgery. The grid consists of 60-100 electrodes that can measure brain activity. "By stimulating the electrodes using short currents, we can see which brain areas respond abnormally. Thus, we can create a map of which areas should and should not be removed during epilepsy surgery," the senior author said.
The fact that the data could also teach the researchers something about how our brain works was a new insight. "We have been collecting this data for about 20 years," the author said. "It wasn't until a few years ago that we realized we could use the unaffected areas as a model for the healthy human brain."
The lead author adds: "If you stimulate an electrode in one area, a reaction occurs in another. That lets you know the two areas are connected. You can then measure how long it takes for the reaction to occur. If you know the distance between the two different brain regions, you can calculate how fast the signal is transmitted."
The results of this study provide important information about our central nervous system. Scientists have long been trying to map the connections in our brain. With this information, experts can make more realistic computer models of our brain.
For these models to work, in addition to information about the connections, precise values concerning the speed of those connections are needed. "We now have these numbers for the very first time," the senior author explains, "With our data, researchers can make new and better computer models that increase our understanding of the brain. We expect our work to not only advances epilepsy research, but also research into other brain disorders."
https://www.nature.com/articles/s41593-023-01272-0
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fdevelopmental_6&filter=22
Brain decline comes later than previously thought
- 456 views
- Added
Latest News
Why frequent cannabis users…
By newseditor
Posted 02 Jun
Induction of fetal meiotic…
By newseditor
Posted 01 Jun
Skin cancer rewires its ene…
By newseditor
Posted 01 Jun
Running throughout middle a…
By newseditor
Posted 01 Jun
Type 2 diabetes drug could…
By newseditor
Posted 01 Jun
Other Top Stories
Disrupting protein-protein interaction to treat heart failure
Read more
An inhibitor to regulate Wnt signaling pathway by blocking receptor…
Read more
Genes have more than one start site?
Read more
CTE differs from Alzheimer's disease in protein folding
Read more
A 'druggable' mechanism of tau protein pathology
Read more
Protocols
Metaboverse enables automat…
By newseditor
Posted 02 Jun
Ratphones: An Affordable To…
By newseditor
Posted 31 May
BigNeuron: A resource to be…
By newseditor
Posted 29 May
Designed active-site librar…
By newseditor
Posted 27 May
A microfluidics-enabled aut…
By newseditor
Posted 22 May
Publications
Adolescent exposure to low-…
By newseditor
Posted 02 Jun
The P-body protein 4E-T rep…
By newseditor
Posted 02 Jun
The E3 ubiquitin ligase FBX…
By newseditor
Posted 01 Jun
AMPK is a mechano-metabolic…
By newseditor
Posted 01 Jun
Heart rate variability duri…
By newseditor
Posted 01 Jun
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar