In a new study, scientists used maps of brain connections to predict how brain atrophy would spread in individual patients with frontotemporal dementia (FTD), adding to growing evidence that the loss of brain cells associated with dementia spreads via the synaptic connections between established brain networks. The results advance scientists' knowledge of how neurodegeneration spreads and could lead to new clinical tools to evaluate how well novel treatments slow or block the predicted trajectory of these diseases.
"Knowing how dementia spreads opens a window onto the biological mechanisms of the disease -- what parts of our cells or neural circuits are most vulnerable," said study lead author. "You can't really design a treatment until you know what you're treating."
FTD, the most common form of dementia in people under the age of 60, comprises a group of neurodegenerative conditions with diverse linguistic and behavioral symptoms. As in Alzheimer's disease, the diversity of FTD symptoms reflects significant differences in how the neurodegenerative disease spreads through patients' brains. This variability makes it difficult for scientists searching for cures to pin down the biological drivers of brain atrophy and for clinical trials to evaluate whether a novel treatment is making a difference in the progression of a patient's disease.
Previous research by the study's senior author set off a sea change in dementia research by showing that patterns of brain atrophy in many forms of dementia map closely onto well-known brain networks -- groups of functionally related brain regions that work cooperatively via their synaptic connections, sometimes over long distances. In other words, the work proposed that neurodegenerative diseases don't spread evenly in all directions like a tumor, but can jump from one part of the brain to another along the anatomical circuits that wire these networks together.
In their new study published in Neuron, the authors provided further evidence supporting this idea by examining how well neural network maps based on brain scans in healthy individuals could predict the spread of brain atrophy in FTD patients over the course of a year.
The researchers recruited 42 patients at the UCSF Memory and Aging Center with behavioral variant fronto-temporal dementia (bvFTD), a form of FTD that causes patients to exhibit inappropriate social behaviors, and 30 patients with semantic variant primary progressive aphasia (svPPA), a form of FTD that mainly impacts patients' language abilities. In their first visits to UCSF, each of these patients underwent a "baseline" MRI scan to assess the extent of existing brain degeneration and then had a follow-up scan about a year later to measure how their disease had progressed.
The researchers first estimated where the brain atrophy seen in each patient's baseline scans had begun, based on the hypothesis that brain degeneration begins in some particularly vulnerable location, then spreads out to anatomically connected brain regions. To do this, the researchers built standardized maps of the main functional partners of 175 different brain regions based on functional MRI (fMRI) scans of 75 healthy adults. They then identified which of these networks best matched the pattern of brain atrophy seen in a given FTD patient's baseline brain scans, and defined that network's central hub as the likely epicenter of the patient's degeneration.
They then used the same standardized connectivity maps to predict where the patient's brain atrophy was most likely to have spread in the follow-up scans done one year later, and compared the accuracy of these predictions to others that didn't take functional network connectivity into account.
They found that two particular connectivity measures significantly improved their predictions of a given brain region's chances of developing brain atrophy between the baseline and follow-up brain scans. One, called "shortest path to the epicenter," captured the number of synaptic "steps" that region was from the estimated disease epicenter -- essentially the number of links in the neural chain connecting the two areas -- while the other, called "nodal hazard," represented how many regions connected to a given region were already experiencing significant atrophy.
"It's like with an infectious disease, where your chances of becoming infected can be predicted by how many degrees of separation you have from 'Patient Zero' but also by how many people in your immediate social network are already sick," the author said.
The researchers showed that on average these two measures of network connectivity did better at predicting the spread of disease to a new brain region than its simple straight-line distance from a patient's existing atrophy. In many cases the disease completely bypassed brain areas that were adjacent but not anatomically connected to already-atrophied regions, instead jumping to more functionally linked regions.
Although this method shows great promise, the researchers emphasize that it is not yet ready for clinical use. They hope to improve the accuracy of their predictions by -- among other approaches -- using individualized network maps for each patient rather than using average connectivity maps, and by developing more specialized prediction models for particular subtypes of FTD.
In addition to the biological insights the discovery provides about the mechanisms of spreading brain atrophy in FTD, which will inform ongoing efforts to develop treatments, the researchers also hope the findings will lead to improved metrics for evaluating therapies already entering clinical trials -- for instance by giving trial scientists early insights into whether the treatment is altering a predicted course of disease progression. Researchers could also use better predictions of how atrophy will spread through the brain to help prepare patients and their families for the symptoms they are likely to experience as their disease progresses.
"We are excited about this result because it represents an important first step toward a more precision medicine type of approach to predicting progression and measuring treatment effects in neurodegenerative disease," the senior author said.
In the future, scientists might be able to develop therapies that specifically target the likely next site of disease and perhaps prevent atrophy from spreading from one region to another.
https://www.ucsf.edu/news/2019/10/415631/dementia-spreads-connected-brain-networks
https://www.cell.com/neuron/fulltext/S0896-6273(19)30743-3
Latest News
Ebola virus nucleocapsid as…
By newseditor
Posted 03 Oct
A way to modulate scarring…
By newseditor
Posted 03 Oct
New blood test could be an…
By newseditor
Posted 03 Oct
Neuronal pathways involved…
By newseditor
Posted 02 Oct
Physiological role of 5-for…
By newseditor
Posted 02 Oct
Other Top Stories
Slow-Release Pill Developed to Deliver HIV Therapeutics
Read more
How good bacteria control your genes
Read more
Re-programming innate immune cells to fight tuberculosis
Read more
Immune cells that keep gut fungi under control identified
Read more
Microbes on the skin of mice promote tissue healing, immunity
Read more
Protocols
Droplet-based functional CR…
By newseditor
Posted 03 Oct
Multi-peptide characterizat…
By newseditor
Posted 24 Sep
Nanoplasmonic aptasensor fo…
By newseditor
Posted 20 Sep
Modeling the atrioventricul…
By newseditor
Posted 11 Sep
Modeling the atrioventricul…
By newseditor
Posted 11 Sep
Publications
Intracellular Ebola virus n…
By newseditor
Posted 03 Oct
Host-microbe serotonin meta…
By newseditor
Posted 03 Oct
Biliverdin Reductase-A inte…
By newseditor
Posted 03 Oct
Axon guidance during mouse…
By newseditor
Posted 03 Oct
A new clinical age of aging…
By newseditor
Posted 03 Oct
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar