Elevated levels of the brain protein tau following a sport-related concussion are associated with a longer recovery period and delayed return to play for athletes, according to a study published in the journal Neurology®. The findings suggest that tau, which can be measured in the blood, may serve as a marker to help physicians determine an athlete's readiness to return to the game.
Despite the 3.8 million sports-related concussions that occur annually in the United States, there are no objective tools to confirm when an athlete is ready to resume play. Returning to play too early, before the brain has healed, increases an athlete's risk of long-term physical and cognitive problems, especially if he or she sustains another concussion. Currently, physicians and trainers must make return-to-play decisions based on an athlete's subjective, self-reported symptoms and their performance on standardized tests of memory and attention.
A team evaluated changes in tau in 46 Division I and III college athletes who experienced a concussion. Tau, which plays a role in the development of chronic traumatic encephalopathy or CTE, frontotemporal dementia and Alzheimer's disease was measured in preseason blood samples and again within 6 hours following concussion using an ultra-sensitive technology that allows researchers to detect single protein molecules.
The athletes - a mix of soccer, football, basketball, hockey and lacrosse players from the University of Rochester and Rochester Institute of Technology - were divided into two groups based on recovery time. Athletes in the "long return to play" group took more than 10 days to recover following concussion, while athletes in the "short return to play" group took less than 10 days to return to their sport.
Individuals in the long return to play group had higher levels of tau in their blood 6 hours after concussion compared to those in the short return to play group. Long return to play athletes also exhibited a jump in tau from preseason levels compared to their short return to play counterparts. Statistical analyses showed that higher blood tau concentrations 6 hours post-concussion consistently predicted that an athlete would take more than 10 days to resume play.
"This study suggests that tau may be a useful biomarker for identifying athletes who may take longer to recover after a concussion," said one of the authors. "Athletes are typically eager to get back to play as soon as possible and may tell doctors that they're better even when they're not. Tau is an unbiased measurement that can't be gamed; athletes can't fake it. It may be that tau combined with current clinical assessments could help us make more informed return-to-play decisions and prevent players from going back to a contact sport when their brains are still healing."
The study included both male and female athletes and showed that tau-related changes occurred in both genders across a variety of sports. The team found significant differences based on sex: women made up 61 percent of the long return to play group, but only 28 percent of the short return to play group. Author says this isn't surprising; it's well established that females take longer to recover following concussion than males.
The study is limited by its small size and that more research is needed to establish tau as a biomarker of concussion severity. Next steps include getting blood samples from athletes immediately following a concussion to see if the relationship between tau and return to play holds true on the sideline in the first few minutes following a head hit.
Latest News
Regenerating muscle by dire…
By newseditor
Posted 28 Nov
Brain and heart connections…
By newseditor
Posted 27 Nov
Inhibition of polyamine bio…
By newseditor
Posted 27 Nov
Monomeric α-synuclein activ…
By newseditor
Posted 27 Nov
New antibodies neutralize r…
By newseditor
Posted 27 Nov
Other Top Stories
School-based yoga can help children better manage stress and anxiety
Read more
An immunological memory in the brain
Read more
Does age at menopause affect memory?
Read more
Biomarker to predict severity and guide treatment for brain tumor
Read more
Night owls have higher risk of dying sooner
Read more
Protocols
Biology-guided deep learnin…
By newseditor
Posted 26 Nov
Accurate prediction of prot…
By newseditor
Posted 25 Nov
The Brainbox–a tool to faci…
By newseditor
Posted 24 Nov
Real-time analysis of the c…
By newseditor
Posted 22 Nov
A flexible and versatile sy…
By newseditor
Posted 18 Nov
Publications
Neural signal propagation a…
By newseditor
Posted 28 Nov
Exercised breastmilk: a kic…
By newseditor
Posted 28 Nov
Phase I clinical trial of i…
By newseditor
Posted 28 Nov
The endolysosomal pathway a…
By newseditor
Posted 28 Nov
Brain metastasis-associated…
By newseditor
Posted 27 Nov
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar