The loss of motor function and mental acuity associated with Huntington's disease might be treatable by restoring a cellular quality control process, which researchers have identified as a key factor in the degenerative illness.
Huntington's disease is an inherited condition that results in the gradual erosion of nerve cells, leading to impairments and death. It affects about one in 10,000 people in the United States and has no cure.
Like other neuro-degenerative diseases such as Alzheimer's and Parkinson's, Huntington's disease is caused when certain protein molecules fail to fold into the proper structural shape required for them to function properly. These misfolded proteins build up and become toxic to the nerve cells that control movement and thought.
In a study published in the journal Nature Communications, researchers looked at what causes the failure of the cellular process that usually fixes or discards these misfolded proteins.
"Normally when proteins misfold, the cells have a mechanism to cope," said senior author. "These quality control mechanisms can prod the proteins back into their normal three-dimensional shape, or if the damage is too extensive, target them for removal in the cellular garbage disposal. In Huntington's disease, that's not happening."
Researchers conducted experiments using yeast genetics, biochemistry, chemical biology screening, mouse models and stem cells from patients with Huntington's disease. They found a biochemical explanation for how the quality control process breaks down in Huntington's disease.
They focused on specialized proteins called chaperones -- helpmates that coax the misfolded proteins into their correct conformations. Chaperone proteins are abnormally scarce in people with Huntington's disease, but the cause of that scarcity was not known until now.
The Duke-led team found that the master control for chaperone production, called HSF1, was being destroyed in Huntington's disease due to the presence of abnormally high levels of a chemical modifier called CK2. As a result, neurons die due to their inability to produce sufficient levels of the beneficial chaperones.
"We demonstrated that we could restore the abundance of the protein chaperones by chemically inhibiting CK2 in a cell model of Huntington's disease, or genetically lowering CK2 kinase levels in a Huntington's disease mouse model," senior author said. "In both cases, we dramatically increased the number of healthy neurons and we prevented the muscle wasting that is commonly observed in Huntington's disease."
"We have identified a potential new target for a drug intervention in Huntington's disease," author said, "but there are a lot of basic questions that still need to be answered."
https://corporate.dukehealth.org/news-listing/cellular-quality-control-process-could-be-huntington%E2%80%99s-disease-drug-target?h=nl
http://www.nature.com/articles/ncomms14405
Cellular quality control process could be Huntington's disease drug target
- 3,544 views
- Added
Edited
Latest News
Repairing nerve cells after…
By newseditor
Posted 30 Nov
A gene regulating fat stora…
By newseditor
Posted 30 Nov
Leveraging CRISPR to target…
By newseditor
Posted 30 Nov
Multi-chamber heart organoi…
By newseditor
Posted 29 Nov
A key protein for healthy a…
By newseditor
Posted 29 Nov
Other Top Stories
More than one part of brain is involved in motor learning
Read more
Human brain dendritic action potentials and computational capacity…
Read more
Why women are more prone to heart attacks?
Read more
Mindfulness makes it easier to forget your fears
Read more
Brain size and structural changes in deprived children
Read more
Protocols
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Microfluidic-based skin-on-…
By newseditor
Posted 28 Nov
Biology-guided deep learnin…
By newseditor
Posted 26 Nov
Accurate prediction of prot…
By newseditor
Posted 25 Nov
The Brainbox–a tool to faci…
By newseditor
Posted 24 Nov
Publications
Mitf is a Schwann cell sens…
By newseditor
Posted 30 Nov
OsHLP1 is an endoplasmic-re…
By newseditor
Posted 30 Nov
Probiotic treatment with Bi…
By newseditor
Posted 30 Nov
Metabolic immunity against…
By newseditor
Posted 30 Nov
HSP47 levels determine the…
By newseditor
Posted 30 Nov
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar