Studying the songs of mice from the cloud forests of Costa Rica, researchers have identified a brain circuit that might enable the high-speed back and forth of human conversation. This insight, published in the journal Science, could help researchers better understand the causes of speech disorders and point the way to new treatments.
When two male Alston's singing mice meet--one on his home turf and the other from outside--they sing a kind of duet like two opera performers staking their claim on territory or vying for the attention of a maiden. But the outsider, called a recruit, starts singing only when the resident male has finished his song and then immediately stops if the resident starts up again.
"The recruit is asserting that he's there, and he's going to be competing with the resident," said the study co-author. "The resident says I'm already here and I plan to stay."
This rapid alternation, called vocal turn-taking, is somewhat like two humans having a conversation. Standard laboratory mice don't appear to have these kinds of vocal exchanges. Thus, the new study represents a novel mammalian model to examine brain mechanisms behind the sub-second precision of vocal turn-taking.
"Neuroscientists have traditionally focused on a small number of model organisms to better understand the human brain," said the author. "This study shows that scientists can gain new and exciting insights by tapping into the enormous wealth of natural diversity among animals."
The study found that, along with brain areas that tell muscles to create notes, separate circuits in the motor cortex enable the fast starts and stops that form a conversation between vocal partners.
"Our work directly demonstrates that a brain region called the motor cortex is needed for both these mice and for humans to vocally interact," said senior study author.
"By segregating sound production and control circuits, evolution has equipped the brains of singing mice with the tight vocal control also seen in cricket exchanges, bird duets, and possibly, human discussion," added study co-first author.
Despite the ubiquity of vocal exchanges in the natural world, there were previously no suitable mammalian models in neuroscience for their study.
Moving forward, the researchers are already using their mouse model to guide related exploration of speech circuits in human brains. By understanding the activity that helps to engage two brains in conversation, they can look for the processes that go awry when disease interferes with communication, potentially spurring the development of new treatments for many disorders.
"We need to understand how our brains generate verbal replies instantly using nearly a hundred muscles if we are to design new treatments for the many Americans for whom this process has failed, often because of diseases such as autism or traumatic events like stroke," said the senior author.
. https://news.utexas.edu/2019/02/28/in-singing-mice-scientists-find-clue-to-our-own-rapid-conversations/
http://science.sciencemag.org/content/363/6430/983
Clue to our own rapid conversations from singing mice
- 788 views
- Added
Edited
Latest News
How our cells kill themselves
By newseditor
Posted 27 May
AI predicts the function of…
By newseditor
Posted 27 May
Hippocampo-cortical circuit…
By newseditor
Posted 26 May
A tumor protein p63 isoform…
By newseditor
Posted 24 May
Brain signatures for chroni…
By newseditor
Posted 24 May
Other Top Stories
Spatial DNA organization forms first, then the rest
Read more
How breast milk regulates bone growth
Read more
Fetal genome involved in triggering premature birth
Read more
Human amygdala mood neurons develop during adolescence
Read more
Defective radial glial tiling from gene mutation linked to autism risk
Read more
Protocols
Designed active-site librar…
By newseditor
Posted 27 May
A microfluidics-enabled aut…
By newseditor
Posted 22 May
TomoTwin: generalized 3D lo…
By newseditor
Posted 17 May
Optimization and validation…
By newseditor
Posted 16 May
EmbryoNet: using deep learn…
By newseditor
Posted 12 May
Publications
Structural basis of NINJ1-m…
By newseditor
Posted 27 May
A general model to predict…
By newseditor
Posted 27 May
Emerging frontiers in regen…
By newseditor
Posted 27 May
Promoting regeneration whil…
By newseditor
Posted 27 May
Massively parallel base edi…
By newseditor
Posted 27 May
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar