In a new study published in Cell Reports, researchers have identified previously unknown connections between genetic factors in Autism Spectrum Disorder (ASD).
This neurodevelopmental disorder is associated with a wide range of physiological and behavioral symptoms, including deficits in communication, cognition and motor function, as well as seizures and hyperactivity.
ASD, which affects one in 50 Canadians between the ages of 1-17, has been linked to hundreds of risk genes that could play a role in disease development.
“We still do not know how different genetic risk factors lead to ASD, whether they act independently or through similar molecular pathways to cause the condition. We also don’t know when, or even where, in the brain these genes are expressed and cause the cellular defects that leads to ASD. Do defects occur during fetal development, after a child is born, or at some later point in their lifespan?” says a Senior Scientist.
“Our goal for this study was to clarify the roles of specific risk genes in ASD, and whether different genes converge onto common pathways that regulate cell functions, such as energy production and metabolism.”
Most ASD risk genes produce proteins that are involved in important cellular functions. In this study, the research team used a protein mapping tool to study 41 risk genes associated with ASD, many of which were not previously known to interact with each other.
One of the team’s major findings was that several of the risk genes modulate the activity of mitochondria, the energy factories within cells. Since brain cells are metabolically very active, disruptions to their mitochondrial function can impact brain function.
“The link between ASD risk genes and mitochondrial dysfunction sheds light on how mutations in these genes might change brain cell activity and ultimately cause disease symptoms,” says a postdoctoral researcher.
The study also revealed that the protein-based mapping tool could be used to help classify individuals with ASD who have a shared biological signature. Since ASD is a highly variable disorder, grouping individuals based on the biological factors underlying their symptoms could help researchers develop more tailored treatments in future.
“There is a lot of opportunity for change to occur between the level of the gene sequences, which we are getting a pretty good handle on, and what actually manifests in the patient,” adds the author.
“People who have different forms of a genetic disorder might be more connected than we think at the biological level,” says the author.
The protein-mapping technology used in this study has the potential to improve our understanding of brain function, and can be applied to numerous other brain diseases.
The next step is to apply this technology to patient-specific brain tissue generated in the lab, where stem cells from a patient’s blood are developed into three-dimensional brain tissues that exhibit that patient’s unique gene and protein profiles.
“It would enable us to study a patient’s particular disease mechanisms and eventually, test the effectiveness of different therapies,” says the senior author.
“This innovative approach will open the door to these technologies being used more widely and being applied to other diseases as well,” the author adds.
https://www.cell.com/cell-reports/fulltext/S2211-1247(22)01552-2
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fneuron-specific-protein&filter=22
Connections between genetic factors in Autism Spectrum Disorder
- 715 views
- Added
Latest News
Propionic acid protects ner…
By newseditor
Posted 28 Jan
How cells prevent harmful e…
By newseditor
Posted 28 Jan
Structured cerebellar conne…
By newseditor
Posted 28 Jan
Origins of pleasurable touc…
By newseditor
Posted 25 Jan
Unknown way cells protect t…
By newseditor
Posted 25 Jan
Other Top Stories
Role of 'zona incerta' in memory formation!
Read more
Oversensitive sensory neurons can cause joint deformities
Read more
Why do we remember emotional events better?
Read more
A small molecule that restores visual function after optic nerve in…
Read more
Abnormal 12-hour cyclic gene activity found in schizophrenic brains
Read more
Protocols
Machine learning prediction…
By newseditor
Posted 09 Jan
Differentiating PC12 cells…
By newseditor
Posted 09 Jan
Ultrasensitive sensors reve…
By newseditor
Posted 05 Jan
In vitro-derived medium spi…
By newseditor
Posted 04 Jan
Molecular and spatial signa…
By newseditor
Posted 30 Dec
Publications
Brainstem networks construc…
By newseditor
Posted 28 Jan
The role of platelets in im…
By newseditor
Posted 28 Jan
Invariant inhibition to cal…
By newseditor
Posted 27 Jan
Birdsong neuroscience and t…
By newseditor
Posted 27 Jan
Touch neurons underlying do…
By newseditor
Posted 25 Jan
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar