In virtually all persons with amyotrophic lateral sclerosis (ALS) and in up to half of all cases of Alzheimer’s disease (AD) and frontotemporal dementia, a protein called TDP-43 is lost from its normal location in the nucleus of the cell. In turn, this triggers the loss of stathmin-2, a protein crucial to regeneration of neurons and the maintenance of their connections to muscle fibers, essential to contraction and movement.
Writing in the journal Science, a team of scientists, demonstrate that stathmin-2 loss can be rescued using designer DNA drugs that restore normal processing of protein-encoding RNA.
“With mouse models we engineered to misprocess their stathmin-2 encoding RNAs, like in these human diseases, we show that administration of one of these designer DNA drugs into the fluid that surrounds the brain and spinal cord restores normal stathmin-2 levels throughout the nervous system,” the senior author said.
Several designer DNA drugs are currently in clinical trials for multiple diseases. One such drug has been approved to treat a childhood neurodegenerative disease called spinal muscular atrophy.
The new study builds upon ongoing research regarding the role and loss of TDP-43, a protein associated with ALS, AD and other neurodegenerative disorders. In ALS, TDP-43 loss impacts the motor neurons that innervate and trigger contraction of skeletal muscles, causing them to degenerate, eventually resulting in paralysis.
“In almost all of instances of ALS, there is aggregation of TDP-43, a protein that functions in maturation of the RNA intermediates that encode many proteins. Reduced TDP-43 activity causes misassembly of the RNA-encoding stathmin-2, a protein required for maintenance of the connection of motor neurons to muscle,” said the senior author.
“Without stathmin-2, motor neurons disconnect from muscle, driving paralysis that is characteristic of ALS. What we have now found is that we can mimic TDP-43 function with a designer DNA drug, thereby restoring correct stathmin-2 RNA and protein level in the mammalian nervous system.”
Specifically, the researchers edited genes in mice to contain human STMN2 gene sequences and then injected antisense oligonucleotides — small bits of DNA or RNA that can bind to specific RNA molecules, blocking their ability to make a protein or changing how their final RNAs are assembled — into cerebral spinal fluid. The injections corrected STMN2 pre-mRNA misprocessing and restored stathmin-2 protein expression fully independent of TDP-43 function.
“Our findings lay the foundation for a clinical trial to delay paralysis in ALS by maintaining stathmin-2 protein levels in patients using our designer DNA drug,” the author said.
https://www.science.org/doi/10.1126/science.abq5622
Correcting TDP-43 proteinopathies
- 797 views
- Added
Latest News
Damage to brain's 'control…
By newseditor
Posted 14 Oct
Special immune cells stop m…
By newseditor
Posted 14 Oct
New mutation linked to earl…
By newseditor
Posted 08 Oct
Mechanism of GSDMD pore for…
By newseditor
Posted 08 Oct
How are pronouns processed…
By newseditor
Posted 07 Oct
Other Top Stories
ACE2-independent entry of bat sarbecoviruses into human cells
Read more
The circadian rhythms in cyanobacteria
Read more
How the immune system deals with malaria
Read more
When severe infection causes long-term mood disorders
Read more
How gut microbiota imbalance can lead to Parkinson's disease
Read more
Protocols
Mapping protein-DNA interac…
By newseditor
Posted 09 Oct
Use of synthetic circular R…
By newseditor
Posted 06 Oct
The gut-brain axis in depre…
By newseditor
Posted 04 Oct
Droplet-based functional CR…
By newseditor
Posted 03 Oct
Multi-peptide characterizat…
By newseditor
Posted 24 Sep
Publications
Quantitative susceptibility…
By newseditor
Posted 14 Oct
BCAS1-positive oligodendroc…
By newseditor
Posted 14 Oct
The transcription regulator…
By newseditor
Posted 14 Oct
Does glial lipid dysregulat…
By newseditor
Posted 09 Oct
The Nobel Prize in Chemistr…
By newseditor
Posted 09 Oct
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar