In late-stage Parkinson’s disease, the drug levodopa becomes less effective in treating symptoms because of the inexorable loss of dopamine-releasing neurons. But a new preclinical study shows a gene therapy targeting the small brain region where these neurons reside, the substantia nigra, substantially boosts the benefits of levodopa.
The gene therapy restored the ability of neurons in the substantia nigra to convert levodopa to dopamine. In essence, this allowed levodopa to recreate the environment found in the healthy brain and eliminated the aberrant brain activity responsible for difficulty in moving.
In the same study, scientists also provide an explanation for why dopamine-releasing neurons are lost in the disease. Using advanced genetic tools, the authors show that damage to the powerplants inside dopamine-releasing neurons (mitochondria) is sufficient to trigger a sequence of events that faithfully recapitulates what happens to brain circuits in Parkinson’s disease.
The findings in mice published in Nature, may help identify humans in the earliest stages of Parkinson’s disease, develop therapies to slow disease progression and treat late-stage disease.
The key new findings:
Damage to the power plants in dopamine-releasing neurons is enough to cause Parkinson’s disease. When these power plants (mitochondria) begin to shut down, the ability of neurons to do their jobs in the brain is compromised. Without a sufficient source of energy, neurons eventually wither and die. This finding opens a new path to develop therapies to protect the function of mitochondria.
Contrary to the past 30 years of thinking, the emergence of the motor symptoms of Parkinson’s disease requires the loss of dopamine release in a small region of the brain called the substantia nigra. This discovery also opens the door to new therapies for late-stage Parkinson’s disease patients.
Scientists demonstrated that a gene therapy targeting the substantia nigra effectively boosts the symptomatic benefit of levodopa.
“The development of effective therapies to slow or stop Parkinson’s disease progression requires scientists know what causes it,” said the lead study author. “This is the first time there has been definitive evidence that injury to mitochondria in dopamine-releasing neurons is enough to cause a human-like parkinsonism in a mouse.
“Whether mitochondrial damage was a cause or consequence of the disease has long been debated. Now that this issue is resolved, we can focus our attention on developing therapies to preserve their function and slow the loss of these neurons.”
In addition to providing a clear target for disease-modifying therapies, the study provides a model of Parkinson’s disease before clinical symptoms appear. The slow, progressive loss of dopamine-releasing neurons in the model allowed researchers to see what may be happening in the brain well before movement becomes difficult.
“This new ‘human-like’ model may help us develop tests that would identify people who are on their way to being diagnosed with Parkinson’s disease in five or 10 years,” the lead said. “Doing so would allow us to get them started early on therapies that could alter disease progression.”
https://www.nature.com/articles/s41586-021-04059-0
Disruption of mitochondrial complex I induces progressive parkinsonism
- 1,091 views
- Added
Edited
Latest News
Propionic acid protects ner…
By newseditor
Posted 28 Jan
How cells prevent harmful e…
By newseditor
Posted 28 Jan
Structured cerebellar conne…
By newseditor
Posted 28 Jan
Origins of pleasurable touc…
By newseditor
Posted 25 Jan
Unknown way cells protect t…
By newseditor
Posted 25 Jan
Other Top Stories
Mating can cause epigenetic changes that last for 300 generations
Read more
Gene therapy to treat developmental disabilities
Read more
Neurotransmitter release impairment in schizophrenia with genetic m…
Read more
Prenatal editing in preclinical model to correct lysosomal storage…
Read more
Potential role of 'junk DNA' sequence in aging, cancer
Read more
Protocols
Machine learning prediction…
By newseditor
Posted 09 Jan
Differentiating PC12 cells…
By newseditor
Posted 09 Jan
Ultrasensitive sensors reve…
By newseditor
Posted 05 Jan
In vitro-derived medium spi…
By newseditor
Posted 04 Jan
Molecular and spatial signa…
By newseditor
Posted 30 Dec
Publications
Brainstem networks construc…
By newseditor
Posted 28 Jan
The role of platelets in im…
By newseditor
Posted 28 Jan
Invariant inhibition to cal…
By newseditor
Posted 27 Jan
Birdsong neuroscience and t…
By newseditor
Posted 27 Jan
Touch neurons underlying do…
By newseditor
Posted 25 Jan
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar