Investigators have comprehensively mapped molecular activity in the brain and spinal cord that is responsible for regulating the body's response to central nervous system (CNS) disorders such as Alzheimer’s, Huntington's disease and spinal cord injuries.
The research focused on cellular changes in astrocytes, a specialized support cell type in the brain and spinal cord. These cellular changes, known collectively as “reactivity,” play a critical role in regulating outcomes for central nervous system disorders.
This is the first time a team of scientists has provided evidence demonstrating that astrocytes use specialized collections of molecules called transcriptional regulators to shape disorder-specific changes in their molecular profiles.
The discovery, detailed in the peer-reviewed journal Nature, can help lead to the development of a broad range of new therapies that target specific astrocyte activity to help treat a variety of central nervous system conditions, including multiple sclerosis and stroke.
“There is a growing interest in targeting astrocyte reactivity as treatment strategies for CNS disorders,” said a co-corresponding author of the study. “Understanding how different kinds of astrocyte responses are coordinated and the consequences of manipulating those responses not only will help us better understand diseases of the central nervous system but can provide crucial insights that enable the development of better therapies for these conditions.”
Astrocyte reactivity is a hallmark of virtually all nervous system injuries and diseases. Yet, there is still little understanding of what astrocyte reactivity is, what causes it, how it differs across disorders, and how these differences are regulated.
The term “reactivity” describes a remarkable diversity of astrocyte cellular transformations that each involve changes in gene expression. To find out more about the mechanisms controlling these astrocyte gene expression changes, the team first developed a bioinformatic tool to identify "astrocyte reactivity transcriptional regulators"—specialized molecules that determine the expression of genes—in various neurological injuries or diseases.
The method relies on the consensus of multiple types of data, including computational and biological experimental data, which all have to align to positively identify these specialized molecules.
Next, the investigators used genetic analyses to validate reactivity transcriptional regulators as the major determinant of CNS disorder progression and outcomes.
Together, the results of these studies demonstrated that control of reactivity gene expression changes is highly complex. The team of scientists also showed for the first time how a relatively restricted pool of transcriptional regulators can interact to coordinate the altered expression of hundreds or even thousands of reactivity genes in astrocytes.
“With this broad dataset, we can now begin to probe and link these modular astrocyte gene regulatory pathways to specific aspects and states of reactivity associated with numerous common neurological disorders,” the author said. “Ultimately, we would like to use this information to therapeutically enhance adaptive responses, while diminishing maladaptive aspects of astrocyte reactivity. I am also hopeful that our findings will spark an important shift in how people think about and study astrocyte reactivity.”
https://www.nature.com/articles/s41586-022-04739-5
Divergent transcriptional regulation of astrocyte reactivity across disorders
- 596 views
- Added
Latest News
Gene expression signature t…
By newseditor
Posted 02 Jun
The mechanisms behind swall…
By newseditor
Posted 02 Jun
A new mechanism for sodium…
By newseditor
Posted 02 Jun
How inherited neurodegenera…
By newseditor
Posted 02 Jun
Slowing down muscular dystr…
By newseditor
Posted 02 Jun
Other Top Stories
Mice can see infrared with nanoparticles!
Read more
Tracking the organ development using single cell transcriptome anal…
Read more
Structural difference in the brain region of young adults with addi…
Read more
Depression cannot be prevented with nutritional supplements
Read more
RNAi for drug discovery and treat liver diseases
Read more
Protocols
Protocol to establish a gen…
By newseditor
Posted 03 Jun
Metaboverse enables automat…
By newseditor
Posted 02 Jun
Ratphones: An Affordable To…
By newseditor
Posted 31 May
BigNeuron: A resource to be…
By newseditor
Posted 29 May
Designed active-site librar…
By newseditor
Posted 27 May
Publications
ER proteostasis regulators…
By newseditor
Posted 03 Jun
Gene expression signature p…
By newseditor
Posted 02 Jun
Prox2 and Runx3 vagal senso…
By newseditor
Posted 02 Jun
Insulin detection in diabet…
By newseditor
Posted 02 Jun
A salt stress-activated GSO…
By newseditor
Posted 02 Jun
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar