Erasing unwanted memories is still the stuff of science fiction, but scientists have now managed to erase one type of memory in mice. In a study reported in Nature Neuroscience, they succeeded in shutting down a neuronal mechanism by which memories of fear are formed in the mouse brain. After the procedure, the mice resumed their earlier fearless behavior, "forgetting" they had previously been frightened.
This research may one day help extinguish traumatic memories in humans - for example, in people with post-traumatic stress disorder, or PTSD. "The brain is good at creating new memories when these are associated with strong emotional experiences, such as intense pleasure or fear," says team leader. "That's why it's easier to remember things you care about, be they good or bad; but it's also the reason that memories of traumatic experiences are often extremely long-lasting, predisposing people to PTSD."
In the study, researhers examined the communication between two brain regions: the amygdala and the prefrontal cortex. The amygdala plays a central role in controlling emotions, whereas the prefrontal cortex is mostly responsible for cognitive functions and storing long-term memories. Previous studies had suggested that the interactions between these two brain regions contribute to the formation and storage of aversive memories, and that these interactions are compromised in PTSD; but the exact mechanisms behind these processes were unknown.
In the new study, the researchers first used a genetically-engineered virus to mark those amygdala neurons that communicate with the prefrontal cortex. Next, using another virus, they inserted a gene encoding a light-sensitive protein into these neurons. When they shone a light on the brain, only the neurons containing the light-sensitive proteins became activated. These manipulations enabled the researchers to activate only those amygdala neurons that interact with the cortex, and then to map out the cortical neurons that receive input from these light-sensitive neurons.
Once they had achieved this precise control over the cellular interactions in the brain, they turned to exploring behavior: Mice that are less fearful are more likely to venture farther than others. They found that when the mice were exposed to fear-inducing stimuli, a powerful line of communication was activated between the amygdala and the cortex. The mice whose brains displayed such communication were more likely to retain a memory of the fear, acting frightened every time they heard the sound that had previously been accompanied by the fear-inducing stimuli.
Finally, to clarify how this line of communication contributes to the formation and stability of memory, the scientists developed an innovative optogenetic technique for weakening the connection between the amygdala and the cortex, using a series of repeated light pulses. Indeed, once the connection was weakened, the mice no longer displayed fear upon hearing the sound. Evidently, "tuning down" the input from the amygdala to the cortex had destabilized or perhaps even destroyed their memory of fear.
Says the author: "Our research has focused on a fundamental question in neuroscience: How does the brain integrate emotion into memory? But one day our findings may help develop better therapies targeting the connections between the amygdala and the prefrontal cortex, in order to alleviate the symptoms of fear and anxiety disorders."
http://wis-wander.weizmann.ac.il/life-sciences/turning-down-brain-erase-fearful-memories
http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.4523.html
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Does keto diet work in long term?
Read more
Could resetting our internal clocks help control diabetes?
Read more
Long non-coding RNAs keep diabetes at bay
Read more
New path for reversing type-2 diabetes and liver fibrosis
Read more
DNA Misfolding in White Blood Cells Increases Risk for Type 1 Diabetes
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar