DNA over-replication is a phenomenon that can have devastating consequences for proliferating cells. When parts of the genome are duplicated more than once, cells suffer from 'genomic instability' (alterations to the structure, composition and/or number of chromosomes), and this process gives rise to aberrant cells as those detected in many carcinomas.
The cooperation of two proteins called CDC6 and CDT1 is essential for normal DNA replication but when they are not properly regulated, the genetic material replicates in excess. A paper published in Cell Reports sets out the fatal consequences of in vivo re-replication for the first time in mammalian organisms.
Genome stability depends, to a great extent, on the accuracy of the DNA replication process. Exposure to UV light or to certain toxic chemicals increase the frequency of errors in the copy that may cause the death or the malignant transformation of the cell. Recent epidemiological studies indicate, for example, that two-thirds of cancerous mutations occur due to replication errors.
"Broadly, there are three things that can go wrong in genome replication," explains leader of the study. "There may be too many mutations, the cell may replicate prematurely, without being prepared to do so and, finally, it may replicate too far."
There are control mechanisms throughout all the key points of the process to prevent these situations. Two of these crucial links are the CDC6 and CDT1 proteins, which assemble the replicating machinery responsible for copying the 2 metres of DNA contained in each cell. Once the process is over, these proteins are inhibited biochemically because if they stay active, they can restart the replication process. In unicellular organisms such as yeast, DNA re-replication can lead to gene amplification, a genetic alteration common in cancer cells.
The group have used genetically modified mice to demonstrate that when CDC6 and CDT1 accumulate at abnormally high levels, DNA re-replication occurs in some cell types, affecting tissue functionality. Animals that overexpress one or another protein do not present replication issues but those with excessive levels of CDC6 and CDT1 do not survive more than two weeks, affected mainly by the loss of progenitor cells required for the regeneration of gastrointestinal tissue.
"Previous cellular studies pointed in the direction that CDT1 deregulation was sufficient to induce over-replication," explains the senior author. However, "in the in vivo studies, we have found that most tissues need the combination of both proteins." What are the implications of this finding? "Cancer cells frequently have a very high basal level of CDC6", says the senior author, which is related to their high rate of proliferation." Therefore, in these cells, it would be relatively easy to induce re-replication by simply increasing CDT1 levels, which would not affect normal cells.
Researchers are trying to use drugs to increase the levels of this protein, they are trying to determine whether, in the light of the results obtained so far, lethal DNA re-replication can be induced selectively in cancer cells in order to eliminate them from the body.
https://www.cnio.es/ing/publicaciones/excessive-dna-replication-and-its-potential-use-against-cancer
http://www.cell.com/cell-reports/abstract/S2211-1247(17)30526-0
Excessive DNA replication and its potential use against cancer
- 1,537 views
- Added
Edited
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Hair-bearing human skin generated entirely from pluripotent stem cells
Read more
Human astrocyte stem cell model developed!
Read more
Adult neurogenesis essential for sleep-induced memory consolidation
Read more
A gene essential for leukemia stem cell development discovered!
Read more
Human gastruloid model from stem cells
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar