A new study published in the journal Nature Communications describes a breakthrough in research related to facioscapulohumeral muscular dystrophy (FSHD). The debilitating genetic disease - which has no approved treatment - affects an estimated 38,000 Americans and causes degeneration and wasting of the skeletal muscles.
Scientists inserted into mice a gene called DUX4, which is believed to cause FSHD in humans. When they activated the gene in the mice skeletal muscle cells, the animals developed a slow progressive muscular dystrophy with key features of the human disease. Previous attempts to generate a mouse model for FSHD have not shown FSHD-like muscle disease.
"In genetic diseases for which therapies have been developed, like Duchenne muscular dystrophy, mouse models like the one we discovered were essential to the development and testing of potential therapies," said principal investigator. "Now that this hurdle has been overcome for FSHD, we have great hope for therapy development.
In addition to providing a way to test therapies for FSHD, the mouse model allows scientists to understand why muscle degenerates in FSHD patients. According to the study's lead author "FSHD is a very unusual muscular dystrophy with a completely different and poorly understood mechanism of muscle damage compared to the more well-known muscular dystrophies. We really do not know why muscle disappears in these patients."
The researchers were surprised to find that when the DUX4 gene was turned on in muscle cells, the mice muscle became inflamed and other cells in the tissue responded by proliferating and overproducing collagen. This led to muscle fibrosis, a condition where contractile muscle cells become replaced by matrix, leading to loss of muscle strength. The involvement of these matrix-producing cells, known as fibroadipogenic progentiors (FAPs), was previously unknown, and suggests that drugs targeting FAPs or fibrosis might be candidates for slowing down the progression of FSHD.
"This study already points to some targets for future drugs, which is very exciting," senior author added. "With this mouse model, I'm hopeful we'll make progress in our pursuit for a cure."
https://www.nature.com/articles/s41467-017-00730-1
Facioscapulohumeral muscular dystrophy (FSHD) mouse model developed!
- 1,497 views
- Added
Edited
Latest News
Newborn mice remember their moms!
Targeting cancer cells' energy source to replace toxic chemo in osteosarcoma
Calcium accumulation activates immune cells to remove synapses in inflammation
How exercising muscle blocks inflammation
Preventing harmful calcium channel mediated structural changes in spinal cord injury
Other Top Stories
Receptor Protein in Brain Promotes Resilience to Stress
The molecular mechanisms behind addiction and relapse
AI neural network detects heart failure from single heartbeat
Anti-miRNA oligonucleotide to treat polycystic kidney disease
Acute stress response is mediated by a bone hormone and not adrenaline
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
Newborn mice form lasting CA2-dependent memories of their mothers
Metabolic compensation activates pro-survival mTORC1 signaling upon 3-phosphoglycerate dehydrogen…
Localized calcium accumulations prime synapses for phagocyte removal in cortical neuroinflammation
Exercise mimetics and JAK inhibition attenuate IFN--induced wasting in engineered human skeletal…
Acute post-injury blockade of a2d-1 calcium channel subunits prevents pathological autonomic plas…
Presentations
Homeostasis
PLANT MITOCHONDRIAL BIOLOGY
Photosynthesis
Endocrine Disorders
THE PITUITARY GLAND
Posters
ACMT 2020 Annual Scientific Meeting Abstracts - New York, NY
Abstracts from the 2020 Annual Scientific Meeting of the British and Irish Hypertension Society (…
ACNP 58th Annual Meeting: Poster Session III
ACNP 58th Annual Meeting: Poster Session II
ACNP 58th Annual Meeting: Poster Session I