Darwin’s theory of evolution highlighted the importance of adaption and diversity in the natural world. Inside a biological cell, can proteins also perform new functions in new contexts? The answer seems to be yes for the brain’s primary protein-degradation machine, especially when it is placed at synapses, revealing a hitherto unknown mechanism that allows synapses to change in response to different circumstances.
The role of the regulatory (19S) proteasome particle has always been exclusively linked to its functioning in the proteasome complex, where it collaborates with the catalytic (20S) particle to recognize and remove unwanted or damaged proteins- a mechanism that is crucial for normal brain development and function.
Using a super-resolution imaging technique, called DNA PAINT, the research team noticed an abundance of free 19S particles in synapses, floating around without their 20S partners:
“What we realized was that 19S is not only a partner of 20S. It also works alone as an independent regulator for many key synaptic proteins. This revealed a whole new dimension to our understanding of protein function at synapses,” explains the lead author of the article.
The researchers found that the abundant free 19S particles seem to interact with a number of synaptic proteins, including those involved in neurotransmitter release and detection, thus regulating information transfer and storage at synapses.
“Usually, if the cell makes excess copies of one protein component, it needs to get rid of these excess copies. Because cells do not like to have extra proteins lying around when they can’t find partners to enable protein function. We call them ‘orphan proteins’. But in this case, it seems like the synapses are making use of these free 19S particles and adapting them to fulfill alternative functions in the synapses,” the author explains.
With this new discovery, scientist now has a new target for both understanding and treating neurological diseases with dysfunctional synapses, such as Parkinson’s disease and dementia.
The findings will be published in the journal Science.
https://www.science.org/doi/10.1126/science.adf2018
Free regulatory (19S) proteasome particles regulate neuronal synapses
- 993 views
- Added
Latest News
When do brains grow up?
By newseditor
Posted 11 Dec
First map of human limb dev…
By newseditor
Posted 11 Dec
Predicting organ aging by a…
By newseditor
Posted 11 Dec
Map of disease-causing muta…
By newseditor
Posted 11 Dec
Linking gene network and pa…
By newseditor
Posted 09 Dec
Other Top Stories
Genes that block regeneration of neurons identified!
Read more
New type of bone cells found during bone resorption
Read more
New compound for male contraceptive pill
Read more
Resolving dysfunctional macrophages to control neuropathic pain
Read more
Mutant Huntingtin stalls ribosomes and represses protein synthesis
Read more
Protocols
AA2P-mediated DNA demethyla…
By newseditor
Posted 09 Dec
Brain-wide circuit-specific…
By newseditor
Posted 05 Dec
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Publications
Age-related loss of Notch3…
By newseditor
Posted 11 Dec
Luminal breast cancer ident…
By newseditor
Posted 11 Dec
Microglial Rac1 is essentia…
By newseditor
Posted 11 Dec
Small proteins modulate ion…
By newseditor
Posted 11 Dec
Atlas of fetal metabolism d…
By newseditor
Posted 11 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar