It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published in Nature Communications. The study, "Genetic Regulatory Effects Modified by Immune Activation Contribute to Autoimmune Disease Associations," maps genetic variants that affect how much gene expression changes in response to immune stimulus. The findings offer novel insights into the genetic contribution to varying immune responses among individuals and its consequences on immune-mediated diseases.
"Our defense mechanisms against microbial pathogens rely on white blood cells that are specialized to detect infection. Upon encounter of microbes, these cells trigger cellular defense programs via activating and repressing the expression of hundreds of genes," explained one of the senior authors of the study. "We wanted to understand how genetic differences between individuals affect this cellular response to infection," added another senior author of the study.
The human immune system plays a central role in autoimmune and inflammatory diseases, cancer, metabolism and aging. The researchers discovered hundreds of genes where the response to immune stimulus depended on the genetic variants carried by the individual. "These genes include many of the well-known genes of the human immune system, demonstrating that genetic variation has an important role in how the human immune system works," noted the lead author of the study. "While earlier studies have mapped some of these effects, this study is particularly comprehensive, with three stimuli and two time points analyzed."
The study captured genetic variants whose effects on gene regulation was different depending on the different infectious state of the cells. These included four associations to diseases such as cholesterol level and celiac disease. Furthermore, the researchers discovered a trend of genetic risk for autoimmune diseases such as lupus and celiac disease to be enriched for gene regulatory effects modified by the immune state. "This supports a paradigm where genetic disease risk is sometimes driven not by genetic variants causing constant cellular dysregulation, but by causing a failure to respond properly to environmental conditions such as infection," said co-senior author.
The investigators collected blood from 134 volunteers and treated monocytes - a type of white blood cells - in the laboratory with three components that mimic infection with bacteria or a virus. They then analyzed how cells from different individuals respond to infection by measuring gene expression both during the early and late immune response. Integrating the gene expression profiles with genome-wide genetic data of each individual, they were able to map how genetic variants affect gene expression, and how this genetic effect changes with immune stimulus.
"It's been known for a long time that most diseases have both genetic and environmental risk factors. But it's actually more complicated than that because genes and environment interact. As demonstrated in our study, a genetic risk factor may manifest only in certain environments," explained the author. "We are still in early stages of understanding the interplay of genetics and environment, but our results indicate that this is a key component of human biology and disease. The molecular approach that we took in our study can be a particularly powerful way for researchers to delve deeper into this question."
The study's analyses of gene expression patterns in a population scale provide a highly robust and comprehensive dataset of innate immune responses and show wide variation among individuals exposed to diverse pathogens over multiple time points. The research identified population differences in immune response and demonstrated that immune response modifies genetic associations to disease. The research sheds light on the genomic elements underlying response to environmental stimuli, and the dynamics and evolution of immune response.
Latest News
A pair of brain regions pro…
By newseditor
Posted 09 Jun
How the gut microbiome resp…
By newseditor
Posted 08 Jun
Noncanonical cleavage mecha…
By newseditor
Posted 07 Jun
Reversing autoreactivity in…
By newseditor
Posted 07 Jun
Mapping metabolic fluxes in…
By newseditor
Posted 07 Jun
Other Top Stories
Simple food additive slows E. coli poisoning
Read more
Building bridges to regenerate axons
Read more
Tuning the Brain to Alleviate Pain
Read more
Two genes regulating sleep in mice identified!
Read more
Poor nutrition during pregnancy can cause early aging of baby's heart
Read more
Protocols
Hardwiring tissue-specific…
By newseditor
Posted 08 Jun
Using mass spectrometry ima…
By newseditor
Posted 07 Jun
Low-threshold, high-resolut…
By newseditor
Posted 05 Jun
Optical opening of the bloo…
By newseditor
Posted 04 Jun
Protocol to establish a gen…
By newseditor
Posted 03 Jun
Publications
Green light induces antinoc…
By newseditor
Posted 08 Jun
Arginine depletion attenuat…
By newseditor
Posted 08 Jun
Activity-dependent local pr…
By newseditor
Posted 08 Jun
The stress granule protein…
By newseditor
Posted 07 Jun
Revitalizing myocarditis tr…
By newseditor
Posted 07 Jun
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar