While many of us worry about proteins aggregating in our brains as we age and potentially causing Alzheimer's disease or other types of neurodegeneration, we may not realize that some of the same proteins are aggregating in our muscles, setting us up for muscle atrophy in old age.
The scientists have now found brain cells that help clean up these tangles and prolong life -- at least in worms (Caenorhabditis elegans) and possibly mice. This could lead to drugs that improve muscle health or extend a healthy human lifespan.
The research team's most recent discovery, published in the journal Science, is that a mere four glial cells in the worm's brain control the stress response in cells throughout its body and increase the worm's lifespan by 75%. That was a surprise, since glial cells are often dismissed as mere support cells for the neurons that do the brain's real work, like learning and memory.
This finding follows a 2013 study in which the group reported that neurons help regulate the stress response in peripheral cells, though in a different way than glial cells, and lengthen a worm's life by about 25%. In mice, boosting neuronal regulation increases lifespan by about 10%.
Together, these results paint a picture of the brain's two-pronged approach to keeping the body's cells healthy. When the brain senses a stressful environment -- invading bacteria or viruses, for example -- a subset of neurons sends electrical signals to peripheral cells to get them mobilized to respond to the stress, such as through breaking up tangles, boosting protein production and mobilizing stored fat. But because electrical signals produce only a short-lived response, the glial cells kick in to send out a long-lasting hormone, so far unidentified, that maintains a long-term, anti-stress response.
"We have been discovering that if we turn on these responses in the brain, they communicate to the periphery to protect the whole organism from the age onset decline that naturally happens. It rewires their metabolism, it also protects against protein aggregation," said the principal investigator. As a result of the new study, "We think that glia are going to be more important than neurons."
While the roundworm C. elegans is a long way evolutionarily from humans, the fact that glial cells seem to have a similar effect in mice suggests that the same may be true of humans. If so, it may lead to drugs that combat muscle wasting and obesity and perhaps increase a healthy lifespan.
"If you look at humans with sarcopenia or at older mice and humans, they have protein aggregates in their muscle," the senior author said. "If we can find this hormone, perhaps it can keep muscle mass higher in older people. There is a huge opportunity here."
In a commentary in the same issue of Science, two other Stanford University scientists echoed that potential. "Understanding how glial cells respond to stress and what neuropeptides they secrete may help identify specific therapeutic interventions to maintain or rebalance these pathways during aging and age-related diseases," they wrote.
The latest discovery is that glia, as well as neurons, stimulate the unfolded protein response in the endoplasmic reticulum (ER). The ER is the cellular structure that hosts the ribosomes that make proteins -- the ER is estimated to be responsible for the folding and maturation of as many as 13 million proteins per minute.
Two other interventions also increase lifespan in worms: diet restriction, which may call into play other anti-aging mechanisms, and reducing the production of a hormone called insulin-like growth factor (IGF-1).
The new discovery about how neurotransmitter and hormones impact the ER could have implications for diseases that involve muscle wasting, such as Huntington's disease and forms of myocytis.
In 2013, the authors discovered that boosting expression of a protein called xbp-1s in sensory nerve cells in the worm brain boosts the misfolded protein response throughout the worm's body. Shortly afterward, they decided to see if the glial cells enshrouding these neurons were also involved. When they overexpressed the same protein, xbp-1s, in a subset of these glia (cephalic astrocyte-like sheath glia, or CEPsh), they discovered an even larger effect on peripheral cells, as measured by how they deal with a high-fat diet.
They were able to pinpoint the four CEPsh glia responsible for triggering the ER response, because the C. elegans body is so well studied. There are only 959 cells in the entire worm, 302 of which are nerve cells, and 56 are glial cells.
The CEP neurons and CEPsh glia work differently, but additively, to improve metabolism and clean up protein aggregates as the worms slim down and live twice as long as worms without this protection from a high-fat diet.
"The fact that just a few cells control the entire organism's future is mind-boggling," the senior author said. "Glia work 10 times better than neurons in promoting this response and about twice as good in extending lifespan."
The scientists are currently trying to identify the signaling hormone produced by these glial cells, a first step toward finding a way to activate the response in cells that are declining in function and perhaps to create a drug to tune up human cells and stave off the effects of aging, obesity or other types of stress.
They also found that the worms slimmed down because their fat stores, in the form of lipid droplets, were turned into ER. Another research group in Texas has shown that activating xbp-1s in the neurons of mice also has the effect of reducing fat stores and slimming the mice, protecting them from the effects of a high-fat diet and extending their lifespan.
"When they activate it in the neurons, they see the liver getting rid of fat, redistributing metabolic demands," the senior author said. "I think we would see the same thing in humans, as well."
https://news.berkeley.edu/2020/02/21/brain-cells-protect-muscles-from-wasting-away/
https://science.sciencemag.org/content/367/6476/436
Glial cells control the stress response and increase the lifespan
- 2,779 views
- Added
Edited
Latest News
A bacterial defense with po…
By newseditor
Posted 06 Sep
Type I interferon responses…
By newseditor
Posted 06 Sep
Cellular pathways to Alzhei…
By newseditor
Posted 06 Sep
A blood-based assay for the…
By newseditor
Posted 06 Sep
People who lack the immune…
By newseditor
Posted 06 Sep
Other Top Stories
Interleukin-1α causes people to choke on air
Read more
Oddly shaped immune cells cause fibrosis
Read more
Pro inflammatory molecule modulates brain function
Read more
Antibodies as 'messengers' in the nervous system
Read more
Microbiota-initiated antibody formation in mice
Read more
Protocols
Clinical utility of a blood…
By newseditor
Posted 06 Sep
A glia-enriched stem cell 3…
By newseditor
Posted 01 Sep
Mouse models to investigate…
By newseditor
Posted 30 Aug
A brief guide to studying e…
By newseditor
Posted 28 Aug
Single-cell EpiChem jointly…
By newseditor
Posted 24 Aug
Publications
Mitochondrial membrane lipi…
By newseditor
Posted 07 Sep
Microbial production of an…
By newseditor
Posted 07 Sep
Spatially clustered type I…
By newseditor
Posted 06 Sep
Cellular communities reveal…
By newseditor
Posted 06 Sep
Tuberculosis in otherwise h…
By newseditor
Posted 06 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar