New research has established a link between western diets high in fat and sugar and the development of non-alcoholic fatty liver disease, the leading cause of chronic liver disease.
The research has identified the western diet-induced microbial and metabolic contributors to liver disease, advancing our understanding of the gut-liver axis, and in turn the development of dietary and microbial interventions for this global health threat.
“We’re just beginning to understand how food and gut microbiota interact to produce metabolites that contribute to the development of liver disease,” said co-principal investigator. “However, the specific bacteria and metabolites, as well as the underlying mechanisms were not well understood until now. This research is unlocking the how and why.”
The gut and liver have a close anatomical and functional connection via the portal vein. Unhealthy diets change the gut microbiota, resulting in the production of pathogenic factors that impact the liver. By feeding mice foods high in fat and sugar, the research team discovered that the mice developed a gut bacteria called Blautia producta and a lipid that caused liver inflammation and fibrosis. That, in turn, caused the mice to develop non-alcoholic steatohepatitis or fatty liver disease, with similar features to the human disease.
“Fatty liver disease is a global health epidemic,” said one of the lead researchers. “Not only is it becoming the leading cause of liver cancer and cirrhosis, but many patients I see with other cancers have fatty liver disease and don't even know it. Often, this makes it impossible for them to undergo potentially curative surgery for their other cancers.”
As part of this study, the researchers tested treating the mice with an antibiotic cocktail administered via drinking water. They found that the antibiotic treatment reduced liver inflammation and lipid accumulation, resulting in a reduction in fatty liver disease. These results suggest that antibiotic-induced changes in the gut microbiota can suppress inflammatory responses and liver fibrosis.
https://www.nature.com/articles/s41467-023-35861-1
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fwestern-diet&filter=22
How and why western diets high in sugar and fat cause liver disease
- 827 views
- Added
Latest News
NAD+ metabolic enzyme's rol…
By newseditor
Posted 09 Jun
Viruses such as SARS-CoV-2…
By newseditor
Posted 09 Jun
A pair of brain regions pro…
By newseditor
Posted 09 Jun
How the gut microbiome resp…
By newseditor
Posted 08 Jun
Noncanonical cleavage mecha…
By newseditor
Posted 07 Jun
Other Top Stories
Genome analysis just got personal!
Read more
Computational model of the thalamic microcircuit in the mouse brain
Read more
How a single mutation causes ataxia
Read more
Structural basis of calmodulin modulation of the rod cyclic nucleot…
Read more
Genetic analysis tool to improve cancer modeling
Read more
Protocols
Hardwiring tissue-specific…
By newseditor
Posted 08 Jun
Using mass spectrometry ima…
By newseditor
Posted 07 Jun
Low-threshold, high-resolut…
By newseditor
Posted 05 Jun
Optical opening of the bloo…
By newseditor
Posted 04 Jun
Protocol to establish a gen…
By newseditor
Posted 03 Jun
Publications
Myelin dysfunction drives a…
By newseditor
Posted 09 Jun
Steroid receptor coactivato…
By newseditor
Posted 09 Jun
Taurine linked with healthy…
By newseditor
Posted 09 Jun
SARS-CoV-2 infection and vi…
By newseditor
Posted 09 Jun
Cancer-cell-derived fumarat…
By newseditor
Posted 09 Jun
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar