Researchers have determined how Botox – a drug made from a deadly biological substance – enters brain cells.
The researchers have discovered the specific molecular mechanism by which the highly deadly Botulinum neurotoxin type-A, more widely known as Botox, enters neurons.
“We used super-resolution microscopy to show that a receptor called Synaptotagmin 1 binds to two other previously known clostridial neurotoxin receptors to form a tiny complex that sits on the plasma membrane of neurons,” the senior author said.
“The toxin hijacks this complex and enters the synaptic vesicles which store neurotransmitters critical to communication between neurons.
“Botox then interrupts the communication between nerves and muscle cells, causing paralysis.”
The discovery means new therapeutic targets can be identified to develop effective treatments for botulism – a rare but potentially fatal bacterial infection.
“Now we know how this complex allows the toxin internalization, we can block interactions between any two of the three receptors to stop the deadly toxins from getting into neurons,” the author said.
The injectable drug Botox was originally developed to treat people with the eye condition strabismus, but was quickly found to alleviate migraine, chronic pain, and spasticity disorders.
Now, it’s regularly used in plastic surgeries and is commonly known as a cosmetic treatment to smooth wrinkles.
The author said just how the neurotoxin worked to relax muscles has previously been difficult to track.
“Clostridial neurotoxins are among the most potent protein toxins known to humans,” the author said.
“We now have a full picture of how these toxins are internalised to intoxicate neurons at therapeutically relevant concentrations.”
https://www.embopress.org/doi/full/10.15252/embj.2022112095
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fpresynaptic-targeting&filter=22
How Botox enters the brain cells
- 1,186 views
- Added
Latest News
Damage to brain's 'control…
By newseditor
Posted 14 Oct
Special immune cells stop m…
By newseditor
Posted 14 Oct
New mutation linked to earl…
By newseditor
Posted 08 Oct
Mechanism of GSDMD pore for…
By newseditor
Posted 08 Oct
How are pronouns processed…
By newseditor
Posted 07 Oct
Other Top Stories
Coloring specific genes and cells in organoids using CRISPR-HOT
Read more
A sensor to detect pH changes in the brain!
Read more
Aspiration assisted printing spheroids for drug discovery
Read more
A new nanoscale 4D printing technique
Read more
Novel blood test points to risk of weight gain and diabetes
Read more
Protocols
Mapping protein-DNA interac…
By newseditor
Posted 09 Oct
Use of synthetic circular R…
By newseditor
Posted 06 Oct
The gut-brain axis in depre…
By newseditor
Posted 04 Oct
Droplet-based functional CR…
By newseditor
Posted 03 Oct
Multi-peptide characterizat…
By newseditor
Posted 24 Sep
Publications
Quantitative susceptibility…
By newseditor
Posted 14 Oct
BCAS1-positive oligodendroc…
By newseditor
Posted 14 Oct
The transcription regulator…
By newseditor
Posted 14 Oct
Does glial lipid dysregulat…
By newseditor
Posted 09 Oct
The Nobel Prize in Chemistr…
By newseditor
Posted 09 Oct
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar