Cognitive flexibility -- the brain's ability to switch between different rules or action plans depending on the context -- is key to many of our everyday activities. For example, imagine you're driving on a highway at 65 miles per hour. When you exit onto a local street, you realize that the situation has changed and you need to slow down.
When we move between different contexts like this, our brain holds multiple sets of rules in mind so that it can switch to the appropriate one when necessary. These neural representations of task rules are maintained in the prefrontal cortex, the part of the brain responsible for planning action.
A new study from has found that a region of the thalamus is key to the process of switching between the rules required for different contexts. This region, called the mediodorsal thalamus, suppresses representations that are not currently needed. That suppression also protects the representations as a short-term memory that can be reactivated when needed.
"It seems like a way to toggle between irrelevant and relevant contexts, and one advantage is that it protects the currently irrelevant representations from being overwritten," says the senior author.
Previous studies have found that the prefrontal cortex is essential for cognitive flexibility, and that a part of the thalamus called the mediodorsal thalamus also contributes to this ability. In a 2017 study published in Nature, the researchers showed that the mediodorsal thalamus helps the prefrontal cortex to keep a thought in mind by temporarily strengthening the neuronal connections in the prefrontal cortex that encode that particular thought.
In the new study, the authors wanted to further investigate the relationship between the mediodorsal thalamus and the prefrontal cortex. To do that, he created a task in which mice learn to switch back and forth between two different contexts -- one in which they must follow visual instructions and one in which they must follow auditory instructions.
In each trial, the mice are given both a visual target (flash of light to the right or left) and an auditory target (a tone that sweeps from high to low pitch, or vice versa). These targets offer conflicting instructions. One tells the mouse to go to the right to get a reward; the other tells it to go left. Before each trial begins, the mice are given a cue that tells them whether to follow the visual or auditory target.
"The only way for the animal to solve the task is to keep the cue in mind over the entire delay, until the targets are given," the senior author says.
The researchers found that thalamic input is necessary for the mice to successfully switch from one context to another. When they suppressed the mediodorsal thalamus during the cuing period of a series of trials in which the context did not change, there was no effect on performance. However, if they suppressed the mediodorsal thalamus during the switch to a different context, it took the mice much longer to switch.
By recording from neurons of the prefrontal cortex, the researchers found that when the mediodorsal thalamus was suppressed, the representation of the old context in the prefrontal cortex could not be turned off, making it much harder to switch to the new context.
In addition to helping the brain switch between contexts, this process also appears to help maintain the neural representation of the context that is not currently being used, so that it doesn't get overwritten, the senior author says. This allows it to be activated again when needed. The mice could maintain these representations over hundreds of trials, but the next day, they had to relearn the rules associated with each context.
The findings could help guide the development of better artificial intelligence algorithms, the senior author says. The human brain is very good at learning many different kinds of tasks -- singing, walking, talking, etc. However, neural networks (a type of artificial intelligence based on interconnected nodes similar to neurons) usually are good at learning only one thing. These networks are subject to a phenomenon called "catastrophic forgetting" -- when they try to learn a new task, previous tasks become overwritten.
Researchers now hope to apply their findings to improve neural networks' ability to store previously learned tasks while learning to perform new ones.
http://news.mit.edu/2018/cognitive-flexibility-thalamus-1119
https://www.nature.com/articles/s41593-018-0266-2
How brain maintains cognitive flexibility
- 725 views
- Added
Edited
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Reducing tau levels in excitatory neurons soon after birth can prev…
Read more
Brain circuit that helps in finding your car in a parking lot
Read more
PHGDH expression and Alzheimer's disease
Read more
Older men with high body-mass index have more sperm cell irregulari…
Read more
Channels for CSF to enter the skull bone marrow and its implications
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar