A tangle of pockets, tubes and sac-like membrane structures runs through the cells of humans, animals, plants and fungi: the endoplasmic reticulum, or ER for short. In the ER, proteins are manufactured, folded into their three-dimensional structure and modified, lipids and hormones are produced and calcium concentrations in the cell are controlled. In addition, the ER forms the basis for the cellular transport system, feeds misfolded proteins to intracellular disposal and renders toxins that have entered the cell harmless.
In view of its multiple tasks, the ER is constantly being remodeled. A process called ER-phagy (roughly “self-digestion of the ER”) is responsible for ER degradation. Involved is a group of signal-receiving proteins – receptors – that are responsible for the membrane curvatures of the ER and thus for its multiple forms in the cell. In ER-phagy, the receptors accumulate at specific sites on the ER and increase membrane curvature to such an extent that, as a consequence, part of the ER is strangulated and broken down into its component parts by cellular recycling structures (autophagosomes).
In cell culture experiments, biochemical and molecular biological studies, and by computer simulations, the scientific team first tested the membrane curvature receptor FAM134B and demonstrated that ubiquitin promotes and stabilizes the formation of clusters of FAM134B protein in the ER membrane. Thus, ubiquitin drives ER-phagy.
The author explains: “Ubiquitin causes the FAM134B clusters to become more stable and the ER to bulge out more at these sites. The stronger membrane curvature then leads to further stabilization of the clusters and, moreover, attracts additional membrane curvature proteins. So the effect of ubiquitin is self-reinforcing.” The researchers were also able to detect cluster formation using super-high resolution microscopy.
The author continues: “To fulfill this function, ubiquitin changes the shape of part of the FAM134B protein. This is another facet of ubiquitin that performs an almost unbelievable array of tasks to keep all different cell functions working.”
The importance of ER-phagy is demonstrated by diseases resulting from a defective FAM134B protein. A research team previously identified mutations in the FAM134B gene causing a very rare hereditary sensory and autonomic neuropathy (HSAN), in which sensory nerves die. As a result, patients are unable to perceive pain and temperature correctly, which can lead to incorrect stresses or injuries going unnoticed and developing into chronic wounds.
Mutations in another membrane curvature protein called ARL6IP1 cause a similar neurodegenerative disorder which combines sensory defects with muscle hardening (spasticity) in the legs. The scientific team has now identified that ARL6IP1 belongs to the ER-phagy machinery as well and is also ubiquitinated during ER-phagy.
Another author explains: “In mice that do not possess the ARL6IP1 protein, we can see that the ER virtually expands and degenerates as the cells age. This leads to an accumulation of misfolded proteins or protein clumps, which are no longer disposed of in the cell. As a result, nerve cells in particular, which do not renew as quickly as other body cells, die, causing the clinical symptoms in affected patients and genetically modified mice. We hypothesize from our data that the two membrane curvature receptors FAM134B and ARL6IP1 form mixed clusters during ER-phagy and depend on each other to control normal size and function of ER. Additional work will be required to fully acknowledge the role of ER-phagy in neurons as well as in other cell types.”
Overall, however, the research teams have taken a decisive step toward understanding ER-phagy.
https://www.nature.com/articles/s41586-023-06089-2
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fubiquitination&filter=22
How inherited neurodegenerative diseases develop
- 919 views
- Added
Edited
Latest News
When do brains grow up?
By newseditor
Posted 11 Dec
First map of human limb dev…
By newseditor
Posted 11 Dec
Predicting organ aging by a…
By newseditor
Posted 11 Dec
Map of disease-causing muta…
By newseditor
Posted 11 Dec
Linking gene network and pa…
By newseditor
Posted 09 Dec
Other Top Stories
Macrophages relay long-distance signaling to non-immune cells!
Read more
Antigenic peptide decorated red blood cells to treat autoimmune dis…
Read more
A scaffold acts as an enzyme in the axonal degeneration!
Read more
Cell coordination breakdown in aging!
Read more
Master detox molecule boosts immune defenses
Read more
Protocols
AA2P-mediated DNA demethyla…
By newseditor
Posted 09 Dec
Brain-wide circuit-specific…
By newseditor
Posted 05 Dec
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Publications
Atlas of fetal metabolism d…
By newseditor
Posted 11 Dec
Isochronic development of c…
By newseditor
Posted 11 Dec
Organ aging signatures in t…
By newseditor
Posted 11 Dec
Saturation genome editing o…
By newseditor
Posted 11 Dec
Integrating direct electric…
By newseditor
Posted 10 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar