Severe injuries to the lung from diseases such as COVID-19 trigger abnormal stem cell repair that alters the architecture of the lung. The aberrant stem cell differentiation in response to injury can prevent the restoration of normal lung function.
Appearing in Nature Cell Biology, researchers discovered that severe lung injuries can trigger lung stem cells to undergo abnormal differentiation. They utilized stem cell organoid models to uncover a novel stem cell pathway that is seen in severely injured lungs from COVID-19 and idiopathic pulmonary fibrosis patients.
This study offers a roadmap to understand how severely injured lungs can remodel and scar and provides a potential pathway to reverse the remodeling by targeting the abnormal stem cells differentiation.
It has been previously accepted that the regenerative capacity of resident stem cells of the alveolus (AEC2s), operates similarly mice and humans. The researchers unexpectedly found that human AEC2s (hAEC2s), unlike mouse AEC2s, robustly transdifferentiate into functional basal cells with cues from pathological fibroblasts. Single-cell analysis of the hAEC2-to-basal cell trajectory in vitro revealed the presence of transitional cell types and basal cell subsets previously identified in lungs with Idiopathic Pulmonary Fibrosis (IPF).
Utilizing a novel fibroblast/hAEC2 organoid platform, the authors could model the stem cell metaplasia, or abnormal stem cell differentiation, seen in severe alveolar injury. Furthermore, the discovery that hAEC2s can generate pathologic transitional cell types and basal cells provides experimental confirmation of a stem cell trajectory that is seen in diseased human lungs.
"The first time we saw hAEC2s differentiating into basal cells, it was so striking that we thought it was an error,” said one of the senior authors. “But rigorous validation of this novel trajectory has provided enormous insight on how the lung remodels in response to severe injury, and a potential path to reverse the damage."
The finding that hAEC2s undergo progressive transdifferentiation to metaplastic basal cells is not unique to IPF. Alveolar metaplastic basal cells are also common in sections of scleroderma and COVID lungs, and these are intermingled with transitional cells in areas of active remodeling. The common finding of transitional cells in hAEC2-derived organoids as well as hAEC2 xenografts and in histologic analyses of fibrotic lungs, suggest hAEC2s are a major source of metaplastic basal cells in diseases with severe alveolar injury.
The study provides the groundwork for future research to identify therapeutic targets that might prevent or reverse metaplastic differentiation in severe lung injury, and whether other components of the fibrotic niche such as endothelial cells and immune cells are able to drive the metaplastic phenotype.
https://www.nature.com/articles/s41556-021-00809-4
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fhuman-alveolar-type-2&filter=22
How lung stem cells undergo abnormal differentiation
- 912 views
- Added
Latest News
A signaling molecule that potently stimulates hair growth
New pathway for accumulation of age-promoting 'zombie cells'
Protecting the brain from dementia-inducing abnormal protein aggregates
Why many cancer cells need to import fat
Role of nonsense-mediated mRNA decay (NMD) in fragile X-syndrome
Other Top Stories
Untangling the proteins that trigger some cancerous tumors
Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis
An omega-3 fatty acid kills tumor by ferroptosis
Extracellular mRNA transported to the nucleus prevents cancer metastasis
Cancer immunotherapy may self-limit its efficacy
Protocols
Light and electron microscopic imaging of synaptic vesicle endocytosis at mouse hippocampal cultures
FLAMBE: A kinetic fluorescence polarization assay to study activation of monomeric BAX
Single-cell mass spectrometry
A behavioral paradigm for measuring perceptual distances in mice
Rapid detection of an Ebola biomarker with optical microring resonators
Publications
Cough hypersensitivity and chronic cough
Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening
The why and how of adaptive immune responses in ischemic cardiovascular disease
Central role for p62/SQSTM1 in the elimination of toxic tau species in a mouse model of tauopathy
MicroRNA-124-3p-enriched small extracellular vesicles as a therapeutic approach for Parkinson's d…
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER