Preterm birth is a leading cause of infant deaths and illness in the U.S. -- yet its underlying molecular causes remain largely unclear. About 40 to 50% of preterm births, defined as births before 37 weeks of pregnancy, are estimated to be "idiopathic," meaning they arise from unexplained or spontaneous labor. And, maternal stress linked to depression and post-traumatic stress disorders as well as fetal stress have been strongly implicated in preterm births with no known cause.
Now, for the first time, a preclinical study has uncovered a mechanism to help explain how psychological and/or physiological stress in pregnant women triggers idiopathic preterm birth. A research team shows how cortisol -- the "fight-or-flight" hormone critical for regulating the body's response to stress -- acts through stress-responsive protein FKBP51 binding to progesterone receptors to inhibit progesterone receptor function in the uterus. This reduced progesterone receptor activity stimulates labor.
The findings were reported in Proceedings of the National Academy of Sciences (PNAS).
"This new study fills in some longstanding mechanistic gaps in our understanding of how normal labor begins and how stress causes preterm birth," said the paper's senior author.
Progesterone reduces contractions of the uterus and sustained levels are essential to prevent a baby from being born too early. Reduced uterine progesterone receptor expression and signaling stimulates labor. In the brain, elevated FKBP51 expression has been strongly associated with increased risk for stress-related disorders.
Previous work by the team showed that normal human labor starting at term (between 37 and 42 weeks of pregnancy) was associated with reduced expression of progesterone receptors and increased expression of FKBP51, specifically in maternal decidual cells (specialized cells lining the uterus).
For the current study focused on maternal stress-induced idiopathic preterm birth, the researchers combined experiments in human maternal decidual cells and a mouse model in which FKBP5, the gene that makes FKBP51, had been removed, or "knocked out." Altogether, their results revealed a novel functional progesterone withdrawal mechanism, mediated by maternal stress-induced uterine FKBP51 overexpression and enhanced FKPB51-progesterone receptor binding, that decreased progestational effects and triggered preterm birth. The researchers found that Fkbp5 knockout mice (with depletion of the gene encoding for FKBP51) exhibit prolonged gestation and are completely resistant to maternal stress-induced preterm birth.
"Collectively, these results suggest that FKBP51 plays a pivotal role both in term labor and stress-associated preterm parturition (birth) and that inhibition of FKBP51 may prove to be a novel therapy to prevent idiopathic preterm birth," the study authors conclude.
Currently, injectable progesterone is the only drug approved to help prevent preterm birth in high-risk women who have had a previous preterm birth. However, its effectiveness was not confirmed by a recent large clinical trial, sparking debate in the health care community. The authors finding that progesterone receptor activity was reduced in idiopathic preterm birth may explain the apparent lack of effectiveness of supplemental progesterone.
Babies born before 37 weeks, particularly those born before 34 weeks, have more health problems and may face long-term health complications, including childhood lung or heart disease and neurodevelopmental delays, the author said. The likelihood of poor outcomes decreases as gestational age (length of the pregnancy) increases.
"Prevention of idiopathic preterm birth by extending gestation even two or three weeks can benefit the newborn, because it provides critical time needed for the fetus's lungs and brain to mature," the author said. "Our research indicates the importance of investigating the potential use of FKBP51 inhibitors as a targeted therapy to reduce the risk of stress-related preterm birth.
https://hscweb3.hsc.usf.edu/blog/2021/03/08/study-identifies-a-molecular-process-to-explain-how-maternal-stress-triggers-idiopathic-preterm-birth/
https://www.pnas.org/content/118/11/e2010282118
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fdecidual-cell-fkbp51&filter=22
How maternal stress triggers idiopathic preterm birth
- 588 views
- Added
Edited
Latest News
A vascularized model of the human liver regeneration
Norovirus and other "stomach viruses" can spread through saliva
GPUs to discover human brain connectome
Computer models predict Face dissimilarity
Activation of a glycolytic enzyme in the metastasis of pancreatic cancer
Other Top Stories
A new role for B-complex vitamins in promoting stem cell proliferation
Breakthrough in scaling up life-changing stem cell production
Two proteins safeguard skin stem cells
Original cell type does not affect iPS cell differentiation to blood
Mass produce human neurons for studying neuropsychiatric disorders
Protocols
Light and electron microscopic imaging of synaptic vesicle endocytosis at mouse hippocampal cultures
FLAMBE: A kinetic fluorescence polarization assay to study activation of monomeric BAX
Single-cell mass spectrometry
A behavioral paradigm for measuring perceptual distances in mice
Rapid detection of an Ebola biomarker with optical microring resonators
Publications
Conserved meningeal lymphatic drainage circuits in mice and humans
Junctional instability in neuroepithelium and network hyperexcitability in a focal cortical dyspl…
A vascularized model of the human liver mimics regenerative responses
Mobilization-based chemotherapy-free engraftment of gene-edited human hematopoietic stem cells
Enteric viruses replicate in salivary glands and infect through saliva
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER