Aggregates of the protein alpha-synuclein spread in the brains of people with Parkinson’s disease through a cellular waste-ejection process, suggests a new study led by the researchers.
During the process, called lysosomal exocytosis, neurons eject protein waste they cannot break down and recycle. The discovery, published in Nature Communications, could resolve one of the mysteries of Parkinson’s disease and lead to new strategies for treating or preventing the neurological disorder.
“Our results also suggest that lysosomal exocytosis could be a general mechanism for the disposal of aggregated and degradation-resistant proteins from neurons—in normal, healthy circumstances and in neurodegenerative diseases,” said study senior author.
Parkinson’s is a disorder that features the deaths of neurons in a characteristic pattern of spread through the brain, normally unfolding over decades. The disease is best known for causing hand tremors, muscle rigidity, slowed gait and other impairments of normal movement. But it affects a broad set of brain regions, resulting in many different symptoms, including dementia in late stages.
Approximately 1 million people in the United States have Parkinson’s. Available treatments can alleviate some movement abnormalities but do not stop disease progression—essentially because researchers don’t yet have a full understanding of that process.
One important finding that has emerged from the past few decades of Parkinson’s research is that the deaths of neurons in the disease follow the spread, within the brain, of abnormal aggregates of alpha synuclein, a neuronal protein. This spread is an infection-like, chain-reaction process in which aggregates induce normal alpha synuclein to join them, and—as they grow larger—break into smaller aggregates that continue to propagate.
Experiments in mice and non-human primates have shown that injecting these aggregates into the brain can initiate this spread as well as some Parkinson’s-like neurodegeneration. But the details of how neurons transmit them to other neurons, have never been well understood.
In the study, the team showed with detailed studies of Parkinson’s mouse models that alpha synuclein aggregates—capable of spreading and causing neurodegeneration—originated within neurons. These aggregates, they found, then accumulate within capsule-like waste bins in cells called lysosomes.
Lysosomes contain enzymes that can break down, or “lyse,” proteins and other molecular waste into their building blocks, essentially digesting and recycling them. But the researchers found evidence that alpha synuclein aggregates, which are knit together with tight bonds in a close-fitting/snugly layered structure called “amyloid”, are not broken down well within lysosomes; instead, they were often found to be simply dumped from their originating neurons. In this process, called exocytosis, the lysosome moves to the cell membrane and merges with it, so that the lysosome contents are discharged—as-is, without any encapsulation—into the fluid surrounding the cell. The finding helps resolve a hotly debated question in the field.
The researchers also showed in further experiments that by reducing the rate of lysosomal exocytosis, they could reduce the apparent concentration of spread-capable aggregates. That suggests a future approach to treating Parkinson’s.
“We don’t know yet, but neurons might be better off, even in the long term, if they keep these aggregates inside their lysosomes,” the senior author said. “We see a similar impairment of lysosomal function in some genetic disorders, but these don’t necessarily lead to a Parkinson’s level of disease.”
The author emphasized that prior studies, including genetic studies, have linked lysosomal abnormalities not only to Parkinson’s but to also many other neurodegenerative disorders. This hints that lysosomal exocytosis may be a general mechanism of protein-aggregate spread in these diseases—and potentially a general target for treatments and preventives.
The team are currently following up with studies of lysosomes’ roles in Alzheimer’s disease.
https://www.nature.com/articles/s41467-022-32625-1
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Flysosomal-exocytosis&filter=22
How Parkinson's disease spreads in the brain
- 1,055 views
- Added
Latest News
How human cells distribute…
By newseditor
Posted 05 Dec
Human Microglial State Dyna…
By newseditor
Posted 05 Dec
Giant immune cells compensa…
By newseditor
Posted 05 Dec
Menopausal hormone changes…
By newseditor
Posted 05 Dec
Humans can intermittently r…
By newseditor
Posted 04 Dec
Other Top Stories
Molecule linking weight gain to gut bacteria identified
Read more
Bacteria shed the membrane to survive antibiotic treatment
Read more
Brain circuits for object- place learning
Read more
Potential new way to detect and treat Parkinson's disease
Read more
A comprehensive lipidomics for the genetic regulation of cardiac d…
Read more
Protocols
Brain-wide circuit-specific…
By newseditor
Posted 05 Dec
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Publications
Regulation of cellular chol…
By newseditor
Posted 05 Dec
Human microglial state dyna…
By newseditor
Posted 05 Dec
Eating disorders: are gut m…
By newseditor
Posted 05 Dec
Cancer cells reprogram to m…
By newseditor
Posted 05 Dec
Estrogen receptor beta in a…
By newseditor
Posted 05 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar