A team of engineers and neuroscientists has demonstrated for the first time that human brain organoids implanted in mice have established functional connectivity to the animals’ cortex and responded to external sensory stimuli. The implanted organoids reacted to visual stimuli in the same way as surrounding tissues, an observation that researchers were able to make in real time over several months thanks to an innovative experimental setup that combines transparent graphene microelectrode arrays and two-photon imaging.
The team, details their findings in the journal Nature Communications.
Human cortical organoids are derived from human induced pluripotent stem cells, which are usually derived themselves from skin cells. These brain organoids have recently emerged as promising models to study the development of the human brain, as well as a range of neurological conditions.
But until now, no research team had been able to demonstrate that human brain organoids implanted in the mouse cortex were able to share the same functional properties and react to stimuli in the same way. This is because the technologies used to record brain function are limited, and are generally unable to record activity that lasts just a few milliseconds.
The team was able to solve this problem by developing experiments that combine microelectrode arrays made from transparent graphene, and two-photon imaging, a microscopy technique that can image living tissue up to one millimeter in thickness.
“No other study has been able to record optically and electrically at the same time,” said the paper’s first author. “Our experiments reveal that visual stimuli evoke electrophysiological responses in the organoids, matching the responses from the surrounding cortex.”
The researchers hope that this combination of innovative neural recording technologies to study organoids will serve as a unique platform to comprehensively evaluate organoids as models for brain development and disease, and investigate their use as neural prosthetics to restore function to lost, degenerated or damaged brain regions.
“This experimental setup opens up unprecedented opportunities for investigations of human neural network-level dysfunctions underlying developmental brain diseases,” said the senior author.
The researchers used platinum nanoparticles to lower the impedance of graphene electrodes by 100 times while keeping them transparent. The low-impedance graphene electrodes are able to record and image neuronal activity at both the macroscale and single cell levels.
By placing an array of these electrodes on top of the transplanted organoids, researchers were able to record neural activity electrically from both the implanted organoid and the surrounding host cortex in real time. Using two-photon imaging, they also observed that mouse blood vessels grew into the organoid providing necessary nutrients and oxygen to the implant.
Researchers applied a visual stimulus–an optical white light LED–to the mice with implanted organoids, while the mice were under two-photon microscopy. They observed electrical activity in the electrode channels above the organoids showing that the organoids were reacting to the stimulus in the same way as surrounding tissue. The electrical activity propagated from the area closest to the visual cortex in the implanted organoids area through functional connections. In addition, their low noise transparent graphene electrode technology enabled electrical recording of spiking activity from the organoid and the surrounding mouse cortex. Graphene recordings showed increases in the power of gamma oscillations and phase locking of spikes from organoids to slow oscillations from mouse visual cortex.
These findings suggest that the organoids had established synaptic connections with surrounding cortex tissue three weeks after implantation, and received functional input from the mouse brain. Researchers continued these chronic multimodal experiments for eleven weeks and showed functional and morphological integration of implanted human brain organoids with the host mice cortex.
Next steps include longer experiments involving neurological disease models, as well as incorporating calcium imaging in the experimental set up to visualize spiking activity in organoid neurons. Other methods could also be used to trace axonal projections between organoid and mouse cortex.
“We envision that, further along the road, this combination of stem cells and neurorecording technologies will be used for modeling disease under physiological conditions; examining candidate treatments on patient-specific organoids; and evaluating organoids’ potential to restore specific lost, degenerated or damaged brain regions,” the senior author said.
https://www.nature.com/articles/s41467-022-35536-3
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fmultimodal-monitoring&filter=22
Human brain organoids implanted into mouse cortex respond to visual stimuli for first time
- 1,058 views
- Added
Latest News
Why frequent cannabis users…
By newseditor
Posted 02 Jun
Induction of fetal meiotic…
By newseditor
Posted 01 Jun
Skin cancer rewires its ene…
By newseditor
Posted 01 Jun
Running throughout middle a…
By newseditor
Posted 01 Jun
Type 2 diabetes drug could…
By newseditor
Posted 01 Jun
Other Top Stories
Synthetic nanobodies that effectively neutralize SARS-CoV-2
Read more
Gene drive system to block malaria transmission in mosquitoes
Read more
De novo protein decoys block COVID-19 infection
Read more
Retrons protect the bacteria against viral infections
Read more
Pre-existing coronavirus antibodies in children protect against inf…
Read more
Protocols
Metaboverse enables automat…
By newseditor
Posted 02 Jun
Ratphones: An Affordable To…
By newseditor
Posted 31 May
BigNeuron: A resource to be…
By newseditor
Posted 29 May
Designed active-site librar…
By newseditor
Posted 27 May
A microfluidics-enabled aut…
By newseditor
Posted 22 May
Publications
Adolescent exposure to low-…
By newseditor
Posted 02 Jun
The P-body protein 4E-T rep…
By newseditor
Posted 02 Jun
The E3 ubiquitin ligase FBX…
By newseditor
Posted 01 Jun
AMPK is a mechano-metabolic…
By newseditor
Posted 01 Jun
Heart rate variability duri…
By newseditor
Posted 01 Jun
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar