A collaborative study reveals a new gene associated with obesity and maladaptive behavior. The evidence shows that rare mutations in the gene for the serotonin 2C receptor play a role in the development of obesity and dysfunctional behaviors in humans and animal models. The findings, published in the journal Nature Medicine, have both diagnostic and therapeutic implications.
“Serotonin is a chemical produced in the brain that acts as a neurotransmitter, that is, it relays messages from one part of the brain to another. Serotonin communicates the message by binding to brain cells carrying serotonin receptors. These brain cells are involved in a variety of functions, including mood, appetite and some social behaviors, among others,” said co-corresponding author.
In the current study, the researchers investigated the role of one of the serotonin receptors, namely serotonin 2C receptor, in weight regulation and behavior. By combining the individual expertise of each lab – basic and genetic animal studies, the team was able to make the case that serotonin 2C receptor is an important regulator of body weight and certain behaviors.
The project started with the finding that some children diagnosed with severe obesity carried rare mutations or variants of the serotonin 2C receptor gene. The researchers identified 13 different variants associated with obesity in 19 unrelated people. Further characterization of the variants revealed that 11 of them cause loss-of-function of the receptor.
“People who carried loss-of-function variants had hyperphagia, or an extreme appetite, some degree of maladaptive behavior and emotional lability, which refers to rapid, often exaggerated changes in mood including strong emotions such as uncontrollable laughing or crying or heightened irritability or temper,” the author said.
The researchers found that animal models carrying one of the human loss-of-function mutations also became obese, which confirmed the team’s suspicion that loss-of-function mutations of the serotonin 2C receptor gene were involved in obesity.
“This is an important discovery from the diagnostic point of view,” the author said. “We suggest that the serotonin 2C receptor gene should be included in diagnostic gene panels for severe childhood-onset obesity.”
In addition, the team identified a mechanism by which such mutations can lead to obesity. “We found that the serotonin 2C receptor is required to maintain normal firing activity of POMC neurons in the hypothalamus,” the author said. “When the receptor has a loss-of-function mutation, the firing activity of POMC neurons is impaired and as a result the animals overeat and become obese. A normal firing activity of these neurons is required to suppress overeating.”
The researchers also worked with a mouse model to explore the connection between the loss-of-function mutations and behavior.
“We confirmed that having the mutation led to decreased sociability and increased aggression in mice,” the author said. “Before these findings, there was little evidence that the serotonin 2C receptor was required to maintain normal behavior and to prevent aggression. We are interested in investigating the mechanism.”
At the translational level, the findings suggest that patients who develop obesity because of a loss-of-function mutation of this gene, might benefit from compounds that can bypass the deficit in the mutated receptor, such as setmelanotide, by acting directly on downstream pathways. Further studies need to be implemented to test this approach.
https://www.nature.com/articles/s41591-022-02106-5
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fhuman-loss-of-function&filter=22
Human loss-of-function variants in the serotonin 2C receptor associated with obesity and maladaptive behavior
- 1,002 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
3D imaging of lethal prions
Read more
How cholesterol in the brain regulates ion channels and alters thei…
Read more
Delivering nucleic acid therapy to the CNS
Read more
Portable, bedside, low-field magnetic resonance imaging for evaluat…
Read more
Oxygen-delivering hydrogel accelerates diabetic wound healing
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar