Disorders of the autistic spectrum have been associated with hundreds of genetic variations, which have helped in identifying disturbed intracellular signalling pathways and molecular mechanisms typical to autism.
Many gene mutations related to the autism spectrum disorders reside in a gene that produces a protein relevant to synapses, or is important for the connections between neurons. Gene defects linked with developmental disorders are often located in genes involved in brain development.
In a study recently published in the Stem Cell Reports journal, researchers examined molecular mechanisms leading to disturbed neuronal network function in autistic spectrum disorders by utilizing patient-specific neuronal progenitors differentiated from stem cells induced from blood or fibroblasts of skin. Functional changes in the voltage-dependent L-type calcium channels were detected in fragile X syndrome (FraX), the disease model used in the study.
Authors show that intracellular calcium responses to depolarization are augmented in neural progenitors derived from human induced pluripotent stem cells and mouse brain with FXS. Increased calcium influx via nifedipine-sensitive voltage-gated calcium (Cav) channels contributes to the exaggerated responses to depolarization and type 1 metabotropic glutamate receptor activation. The ratio of L-type/T-type Cav channel expression is increased in FXS progenitors and correlates with enhanced progenitor differentiation to glutamate-responsive cells.
Genetic reduction of brain-derived neurotrophic factor in FXS mouse progenitors diminishes the expression of Cav channels and activity-dependent responses, which are associated with increased phosphorylation of the phospholipase C-g1 site within TrkB receptors and changes of differentiating progenitor subpopulations.
FraX is the most common cause of genetic mental retardation and a variant of the autistic spectrum.
"In genetic studies, the L-type calcium channels have been previously linked with autism, and a dysfunction in the channels aptly connects the changes identified in genetic studies to abnormalities of neural network formation and function in autistic spectrum disorders," says the author,
The new research finding increases our understanding of the developmental disorders of the nervous system and provides an opportunity for further research, which can help in identifying the factors that individually increase or decrease vulnerability to defects of neuronal connectivity underlying autistic spectrum disorders and its co-morbid neuropsychiatric diseases.
"Even though functional changes are clearly expressed in similar manner in relation to distinct neurodevelopmental disorders, in human neural progenitor cultures there are a lot of individual variations that presumably regulate the effects of each gene mutation on the individual phenotype," the author elaborates.
https://www.helsinki.fi/en/news/health-news/a-new-study-connects-the-genetic-background-of-autistic-spectrum-disorders-with-stem-cell-dysfunction
https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(18)30471-5?
http://sciencemission.com/site/index.php?page=news&type=view&id=health-science%2Fincreased-calcium&filter=8%2C9%2C10%2C11%2C12%2C13%2C14%2C16%2C17%2C18%2C19%2C20%2C27&redirected=1
Latest News
A new Covid infection mechanism
Connectomic comparison of mouse and human cortex
Intestinal cells and lactic acid bacteria work together to protect against Candida infections
ALS may be linked to both the immune and central nervous systems
Role of urea cycle in Alzheimer's disease
Other Top Stories
Caspases role in non-apoptotic signaling to control cellular homeostasis
Receptor for myelin formation identified!
Role of microRNA in bone formation
Starving eye cells contribute to blindness in elders
When Parkinson's proteins become toxic to brain cells
Protocols
A behavioral paradigm for measuring perceptual distances in mice
Rapid detection of an Ebola biomarker with optical microring resonators
Engineered AAVs for non-invasive gene delivery to rodent and non-human primate nervous systems
Eosin whole-brain mount staining to analyze neurodegeneration in a fly model of Alzheimer's disease
3D pose estimation enables virtual head fixation in freely moving rats
Publications
Pathogen-sugar interactions revealed by universal saturation transfer analysis
Blood flow meets mitophagy
A brainstem circuit for nausea suppression
Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptation…
The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER