Breathing in polluted air could lead to toxic particles being transported from lungs to brain, via the bloodstream – potentially contributing to brain disorders and neurological damage, a new study reveals.
Scientists have discovered a possible direct pathway used by various inhaled fine particles through blood circulation with indications that, once there, the particles stay longer in the brain than in other main metabolic organs.
An international team of published their findings in PNAS.
The scientists revealed they had found various fine particles in human cerebrospinal fluids taken from patients who had experienced brain disorders – uncovering a process which may result in toxic particulate substances ending up in the brain.
A co-author commented: “There are gaps in our knowledge around the harmful effects of airborne fine particles on the central nervous system. This work sheds new light on the link between inhaling particles and how they subsequently move around the body.
“The data suggests that up to eight times the number of fine particles may reach the brain by travelling, via the bloodstream, from the lungs than pass directly via the nose - adding new evidence on the relationship between air pollution and detrimental effects of such particles on the brain.”
Air pollution is a cocktail of many toxic components, but particulate matter (PM, especially ambient fine particles such as PM2.5 and PM0.1), are the most concerning in terms of causing detrimental health effects. Ultrafine particles, in particular, are able to escape the body’s protective systems, including sentinel immune cells and biological barriers.
Recent evidence has revealed a strong link between high levels of air pollution and marked neuroinflammation, Alzheimer's-like changes and cognitive problems in older people and even in children.
The team of scientists discovered that inhaled particles can enter the bloodstream after crossing the air-blood barrier - eventually reaching the brain, and leading to damage of the brain-blood barrier and surrounding tissues as they do so. Once in the brain, the particles were hard to clear and were retained for longer than in other organs.
Their findings offer new evidence in proving the risks from particulate pollution to the central nervous system, but the researchers recommend that more investigation is needed into the mechanics of how inhaled ambient fine particles reach the brain.
https://www.pnas.org/doi/10.1073/pnas.2117083119
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fpassage-of-exogeneous&filter=22
Inhaled toxic particles take direct route from lungs to brain
- 521 views
- Added
Latest News
Mosquitoes have neuronal fail-safes to make sure they can always smell humans
Detecting gut microbes that activate immune cells
Shell microelectrode arrays (MEAs) for brain organoids
Why heat makes us sleepy
Nasal spray peptide can reduce seizure activity, protect neurons in Alzheimer's
Other Top Stories
mRNA methylation differentiates diseased beta cells in type 2 diabetes
Linking nicotine addiction to increased risk for diabetes via brain-pancreas signaling axis
Secretomes of human brown and white fat
Gene function that protects against type 2 diabetes discovered!
Organoids from islet and amniotic epithelial cells to treat diabetes
Protocols
Simultaneous recording of neuronal and vascular activity in the rodent brain using fiber- photom…
VDJdb in the pandemic era: a compendium of T cell receptors specifc for SARS-CoV-2
A scalable organoid model of human autosomal dominant polycystic kidney disease for disease mecha…
An improved organotypic cell culture system to study tissue-resident macrophages ex vivo
Protocol for spike-triggered closed-loop auditory stimulation during sleep in patients with epilepsy
Publications
Bipolar-associated miR-499-5p controls neuroplasticity by downregulating the Cav1.2 subunit CACNB2
Non-canonical odor coding in the mosquito
LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weig…
Calcium homeostasis and cancer: insights from endoplasmic reticulum-centered organelle communicat…
Systemic inflammation after stroke: implications for post-stroke comorbidities
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER