Published in Cell Reports Medicine, the research involved 53 healthy adults for up to 12 weeks. Participants followed either a moderate sugar diet (control), a low-sugar diet (less than 5% of calories from sugar), or a ketogenic (keto) low-carbohydrate diet (less than 8% of calories from carbohydrates).
Key findings include:
-
Increased Cholesterol: The keto diet raised cholesterol levels, particularly in small and medium sized LDL particles. The diet increased apolipoprotein B (apoB), which causes plaque buildup in arteries. In contrast, the low-sugar diet significantly reduced cholesterol in LDL particles.
-
Reduced Favourable Gut Bacteria: The keto diet altered gut microbiome composition, notably decreasing Bifidobacteria, beneficial bacteria often found in probiotics. This bacteria has wide ranging benefits: producing b vitamins, inhibiting pathogens and harmful bacteria and lowering cholesterol. Sugar restriction did not significantly impact the gut microbiome composition.
-
Glucose Tolerance: The keto diet reduced glucose tolerance, meaning the adults’ bodies became less efficient at handling carbohydrates.
-
Both Diets Resulted In Fat Loss: Keto Diet resulted in an average of 2.9 kg fat mass loss per person, whilst the sugar restricted diet followed with an average 2.1 kg fat mass loss per person at 12 weeks.
-
Metabolism: Researchers also noticed that the keto diet caused significant changes in lipid metabolism and muscle energy use, shifting the body’s fuel preference from glucose to fats.
-
Physical Activity Levels: Both sugar restriction and keto diets achieved fat loss without changing physical activity levels. Previous studies from the Centre for Nutrition, Exercise and Metabolism have shown that skipping breakfast or intermittent fasting cause reductions in physical activity.
Lead researcher highlighted the concerning cholesterol findings:
“Despite reducing fat mass, the ketogenic diet increased the levels of unfavourable fats in the blood of our participants, which, if sustained over years, could have long-term health implications such as increased risk of heart disease and stroke.”
Another author explained the impact on gut health:
“Dietary fibre is essential for the survival of beneficial gut bacteria like Bifidobacteria. The ketogenic diet reduced fibre intake to around 15 grams per day, half the NHS recommended intake. This reduction in Bifidobacteria might contribute to significant long-term health consequences such as an increased risk of digestive disorders like irritable bowel disease, increased risk of intestinal infection and a weakened immune function.”
The senior author commented on the glucose findings:
“The ketogenic diet reduced fasting glucose levels but also reduced the body’s ability to handle carbs from a meal. By measuring proteins in muscle samples taken from participants’ legs, we think this is probably an adaptive response to eating less carbohydrates day-to-day and reflects insulin resistance to storing carbs in muscle. This insulin resistance is not necessarily a bad thing if people are following a ketogenic diet, but if these changes persist when people switch back to a higher carbohydrate diet it could increase the risk of developing type 2 diabetes in the long-term”
In light of this new research, the academics conclude that if you’re considering a diet, a low sugar one will be better for most people. More work is needed to understand how individuals may benefit from each type of diet. The government recommends that free sugars (those added to food or drink or found naturally in honey, syrups, fruit juices and smoothies) should be restricted to less than 5% of total energy intake.
https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(24)00381-1
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fketogenic-diet-but-not&filter=22
Latest News
Brain cells that plan where…
By newseditor
Posted 12 Sep
A common fatty acid may hel…
By newseditor
Posted 12 Sep
Transcription factor functi…
By newseditor
Posted 12 Sep
Blood platelet score predic…
By newseditor
Posted 12 Sep
Mouse skin made transparent…
By newseditor
Posted 12 Sep
Other Top Stories
A near-universal way to measure enzyme inhibition
Read more
Lens-free fluorescent microscope
Read more
Allocating resources to synthetic circuits in bacteria may help dru…
Read more
Brain extracellular space imaging using SUSHI
Read more
Detecting molecular biomarker for osteoarthritis using nanotechnology
Read more
Protocols
Modeling the atrioventricul…
By newseditor
Posted 11 Sep
Modeling the atrioventricul…
By newseditor
Posted 11 Sep
Fully defined NGN2 neuron p…
By newseditor
Posted 10 Sep
Clinical utility of a blood…
By newseditor
Posted 06 Sep
A glia-enriched stem cell 3…
By newseditor
Posted 01 Sep
Publications
Clinical sequelae of gut mi…
By newseditor
Posted 13 Sep
Neuroimmune interactions in…
By newseditor
Posted 13 Sep
Metabolism and HSC fate: wh…
By newseditor
Posted 13 Sep
Predictive grid coding in t…
By newseditor
Posted 12 Sep
Vaginal Lactobacillus fatty…
By newseditor
Posted 12 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar