Opioids remain the most potent and effective pain relievers in medicine, but they’re also among the most addictive drugs that can halt a person’s ability to breathe during an overdose — which can be deadly.
Researchers have been racing to develop safer pain reliever drugs that target a specific opioid receptor, called the kappa opioid receptor, that is only found in the central nervous system and not elsewhere in the body, like other opioid receptors.
Previous research suggests that such drugs may not lead to addiction or death due to overdose, but the currently known drugs that target these kappa opioid receptors have their own set of unacceptable side effects, including depression and psychosis.
In one of the first steps towards eventually developing a new wave of kappa opioid receptor drugs without these side effects, researchers have mapped the 3D structure of the central nervous system specific kappa opioid receptor and figured out how it differs from the other opioid receptors.
In this new study, they discovered what instructs the kappa opioid receptor to change its shape, which uniquely binds to opioid drugs, akin to a lock fitting with a specific key.
They published their results in the journal, Nature.
Aside from relieving pain, opioid receptors are also involved in everything from sensing taste and smell to digestion and breathing, as well as responding to many of the body’s hormones. The way that opioid receptors can influence so many functions around the body is by acting with one of seven cell activity proteins, known as G-alpha proteins, that each help to specialize the function they suppress in the cell.
“Knowing how these drugs interact with opioid receptors and having a clear view of this molecular snapshot is critical for allowing researchers to develop more effective pain-relieving drugs. This requires a drug that binds to the right type of opioid receptor, such as one in the central nervous system to reduce pain versus the ones that interact in the gut, causing side effects like constipation,” said study corresponding author. “Additionally, these next generation medications will need to be designed with the appropriate kind of G-alpha protein in mind, as this will help to precisely target location and cell function by determining the specific shape of the opioid receptor — so the drug only reduces pain without affecting other body functions.”
The known kappa opioid receptor drugs do not produce the same euphoria as traditional opioid drugs, making these kappa opioid receptor drugs less likely to be addictive.
For the current study, the researchers used cryogenic electron microscopy in order to visualize the structure of the kappa opioid receptor. They first needed to flash freeze the receptors, which were bound to a hallucinogenic drug with one of two of the traditional G-alpha proteins. They then used a different drug to see how the kappa opioid receptor interacted with two other types of G-alpha proteins; one of these G-alpha proteins is found only in the central nervous system and the other is used to detect taste and smell.
The senior author described the G-protein as shaped like a chainsaw with a handle and a ripcord. Each G-protein had a slightly different position of its chainsaw handle when bound to the kappa opioid receptor. This change in position played an active role in determining the shape of the kappa opioid receptor and thus what drug bound the best to it. These findings ultimately could have implications for how new drugs will be designed.
https://www.nature.com/articles/s41586-023-06030-7
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fligand-and-g-protein_2&filter=22
Ligand and G-protein selectivity in the κ-opioid receptor
- 996 views
- Added
Latest News
AI based histologic biomark…
By newseditor
Posted 30 Nov
Repairing nerve cells after…
By newseditor
Posted 30 Nov
A gene regulating fat stora…
By newseditor
Posted 30 Nov
Leveraging CRISPR to target…
By newseditor
Posted 30 Nov
Multi-chamber heart organoi…
By newseditor
Posted 29 Nov
Other Top Stories
Tumors hijack the cell death pathway to escape radiation induced im…
Read more
Heart cell proliferation by an oncogene, Myc
Read more
How 'hypermutated' malignant brain tumors escape chemotherapy and i…
Read more
Single cell division error may be responsible for complexity in can…
Read more
Stabilizing protein phosphatases to target cancer
Read more
Protocols
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Microfluidic-based skin-on-…
By newseditor
Posted 28 Nov
Biology-guided deep learnin…
By newseditor
Posted 26 Nov
Accurate prediction of prot…
By newseditor
Posted 25 Nov
Publications
Pleiotrophin ameliorates ag…
By newseditor
Posted 30 Nov
Mitf is a Schwann cell sens…
By newseditor
Posted 30 Nov
OsHLP1 is an endoplasmic-re…
By newseditor
Posted 30 Nov
Probiotic treatment with Bi…
By newseditor
Posted 30 Nov
Metabolic immunity against…
By newseditor
Posted 30 Nov
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar