Locomotion, or moving from one place to another, is one of the most fundamental movements we perform. We do it when we want or we need to, and it is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to regulate how fast we travel from one place to another depending on the purpose that drives us.
Now, a new study the scientific journal Nature shows that two regions in the midbrain play specific roles in controlling the start, speed and context dependent selection of locomotion in mice. They are called the Cuneiform Nucleus or CnF and the pedunculopontine nucleus or PPN.
"We find that neurons in both PPN and CnF can start locomotion and that activity in these areas contribute to the maintenance and speed regulation of slower locomotion. However, only CnF is able to elicit the high-speed escape locomotor activity. In contrast, activity in PPN neurons favors slow explorative locomotion," says the senior author.
While the precise coordination of locomotor movements is controlled by neuronal circuits in the spinal cord, the episodic control of locomotion is attributed to descending signals from the brainstem that activate neuronal circuits in the spinal cord.
The midbrain circuits are complex and contain neurons of many different types although the main players are shown to be the so-called glutamatergic neurons.
The researchers have utilized a number of advanced techniques, including optogenetics, to study which types of neurons are involved and the location of the neural networks. By using light and designer drugs, they have been able to activate or inactivate selected groups of nerve cells and then study how this affects the locomotor output in mice.
The researchers identify populations of 'start neurons' and show, for the first time, how the two regions in the midbrain can act both in common or separately to control speed and to select context dependent locomotor behaviors.
"By identifying the midbrain 'start' neurons we complement a previous study where we found 'stop cells' in the brainstem that halt locomotion. Together, the start and stop cells define the episodic nature of locomotion," says the senior author.
The study breaks new grounds in locomotor control and is important for understanding the normal brain function in mice. And the authors believe that the results might benefit humans with disabled locomotion as well.
"In Parkinson's disease which affect the basal ganglia - one of the main source of inputs to the PPN - gait disturbances and freezing of gait are very pronounced. By implanting fine electrodes in the brain - a technique called deep brain stimulation which is already used to treat some symptoms in Parkinson's disease - circuits in either CnF or PPN might now be targeted with new precision and used to increase the locomotor capabilities. Similar approaches may also be attempted after damage to the spinal cord, where initiation of locomotion is strongly affected," says the senior author.
http://healthsciences.ku.dk/news/2018/01/midbrain-start-neurons-control-whether-we-walk-or-run/
https://www.nature.com/articles/nature25448
Latest News
Neurons regulating early alcohol consumption identified!
A single higher dose of Zika vaccine protects both mom and fetus
Many psychiatric disorders arise from common genes
Mitochondrial DNA stress signalling protects the nuclear genome
Artificial intelligence to detect cancer metastasis in the entire body
Other Top Stories
Turning the volume of gene expression up and down
Memory suppressing micro RNA implicated in autism
The presence of extra chromosomes leads to genomic instability
Gene to regulate sleep!
Why do we still have mitochondrial DNA?
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
Maternal vaccination and protective immunity against Zika virus vertical transmission
Flagellin-elicited adaptive immunity suppresses flagellated microbiota and vaccinates against chr…
IgGs from patients with amyotrophic lateral sclerosis and diabetes target CaVα2δ1 subunits impair…
Extracellular vesicles from symbiotic vaginal lactobacilli inhibit HIV-1 infection of human tissues
Amyloid Beta and Tau Cooperate to Cause Reversible Behavioral and Transcriptional Deficits in a M…
Presentations
Hypoxia Inducible Factor - 1 (HIF-1)
Intracellular Protein Degradation
Pathophysiology of Type 1 Diabetes
Plant Viruses
Regulation by changes in chromatin structure
Posters
AACC-2018-Infectious Disease
AACC-2018-Mass Spectrometry Applications
AACC-2018-Lipids/Lipoproteins
AACC-2018-Management
AACC-2018-Immunology-abstracts