Recent research on Parkinson's disease has focused on the gut-brain connection, examining patients' gut bacteria, and even how severing the vagus nerve connecting the stomach and brain might protect some people from the debilitating disease.
But scientists understand little about what's happening in the gut -- the ingestion of environmental toxins or germs, perhaps -- that leads to brain damage and the hallmarks of Parkinson's such as tremors, stiffness and trouble walking.
Now researchers have identified a potential new mechanism in both mice and human endocrine cells that populate the small intestines. Inside these cells is a protein called alpha-synuclein, which is known to go awry and lead to damaging clumps in the brains of Parkinson's patients, as well as those with Alzheimer's disease.
According to findings in the journal JCI Insight, the researchers hypothesize that an agent in the gut might interfere with alpha-synuclein in gut endocrine cells, deforming the protein. The deformed or misfolded protein might then spread via the nervous system to the brain as a prion, or infectious protein, in similar fashion to mad cow disease.
"There is abundant evidence that misfolded alpha-synuclein is found in the nerves of the gut before it appears in the brain, but exactly where this misfolding occurs is unknown," senior author of the paper. "This is another piece of evidence that supports the hypothesis that Parkinson's arises in the gut."
Alpha-synuclein is the subject of much ongoing research on Parkinson's, as it's the main component of Lewy bodies, or toxic protein deposits that take up residence in brain cells, killing them from the inside. The clumps form when alpha-synuclein develops a kink in its normally spiral structure, making it 'sticky,' and prone to aggregating, senior author said.
But how would a protein go from traveling through the inner-most 'tube' of the intestine, where there are no nerve cells, into the nervous system? That's a question authors sought to answer in a 2015 manuscript published in the Journal of Clinical Investigation. Although the main function of gut endocrine cells is to regulate digestion, the researchers found these cells also have nerve-like properties.
Rather than using hormones to communicate indirectly with the nervous system, these gut endocrine cells physically connect to nerves, providing a pathway to communicate with the brain, Liddle said. The researchers demonstrated a gut endocrine cell is placed under the microscope near a neuron. In just a few hours, the endocrine cell moves toward the neuron and fibers appear between them as they establish communication.
The scientists were astonished because the endocrine cells -- which are not nerves -- were behaving like them. This suggests they are able to communicate directly with the nervous system and brain.
With the new finding of alpha-synuclein in endocrine cells, researchers now have a working explanation of how malformed proteins can spread from the inside of the intestines to the nervous system, using a non-nerve cell that acts like a nerve.
They plan to gather and examine the gut endocrine cells from people with Parkinson's to see if they contain misfolded or otherwise abnormal alpha-synuclein. New clues about this protein could help scientists develop a biomarker that could diagnose Parkinson's disease earlier, senior author said.
https://corporate.dukehealth.org/news-listing/pre-clinical-study-suggests-parkinson%E2%80%99s-could-start-gut-endocrine-cells?h=nl
Parkinson's could start in gut endocrine cells!
- 3,110 views
- Added
Edited
Latest News
Brain cells that plan where…
By newseditor
Posted 12 Sep
A common fatty acid may hel…
By newseditor
Posted 12 Sep
Transcription factor functi…
By newseditor
Posted 12 Sep
Blood platelet score predic…
By newseditor
Posted 12 Sep
Mouse skin made transparent…
By newseditor
Posted 12 Sep
Other Top Stories
Key brain circuits for processing fear identified!
Read more
Eating whole grains led to modest improvements in gut microbiota an…
Read more
Exposure to stimuli for overcoming phobia
Read more
Neurons extrude 'exophers' containing protein aggregates and damage…
Read more
Cause of permanent vision loss after head injury discovered
Read more
Protocols
Modeling the atrioventricul…
By newseditor
Posted 11 Sep
Modeling the atrioventricul…
By newseditor
Posted 11 Sep
Fully defined NGN2 neuron p…
By newseditor
Posted 10 Sep
Clinical utility of a blood…
By newseditor
Posted 06 Sep
A glia-enriched stem cell 3…
By newseditor
Posted 01 Sep
Publications
Clinical sequelae of gut mi…
By newseditor
Posted 13 Sep
Neuroimmune interactions in…
By newseditor
Posted 13 Sep
Metabolism and HSC fate: wh…
By newseditor
Posted 13 Sep
Predictive grid coding in t…
By newseditor
Posted 12 Sep
Vaginal Lactobacillus fatty…
By newseditor
Posted 12 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar