In multicellular organisms, body cells adhere to each other to form tissues that perform various physiological functions. Epithelial cells form our skin and lining surfaces, such as the gut and other ducts, and protect our internal organs. To maintain the integrity of an organism and function properly, it is important for these cells to remain attached to each other. They do so through specific types of cellular junctions. These junctions are characterized by proteins, which also help in maintaining cellular identity. The loss of these proteins from cell surfaces causes them to lose their identity as epithelial cells, prompting their transformation into mesenchymal cells (through a process known as epithelial-mesenchymal transformation, or EMT), and subsequently, their progression towards cancer and fibrosis. These cancerous cells are only loosely adherent to each other (given that the proteins that helped maintain cellular adhesion are now lost), so they may separate from each other, migrate into the bloodstream, and cause the cancer to metastasize (spread to other parts of the body).
Now, while the role of proteins in maintaining cellular identity is well-researched, we can’t help but wonder–do lipids (fatty molecules) also play a role in characterizing cells and preventing EMT?
“We know lipids are an important class of biomolecules, necessary for certain cellular functions. One such lipid, a phosphatidylinositol, forms a phospholipid called phosphatidylinositol bisphosphate (PIP2),” the senior author said. PIP2 is important because it is crucial for the formation of signaling molecules that regulate cell proliferation, survival, and migration. “We had evidence that higher amounts of PIP2 were found in the epidermal layer of skin, so we hypothesized that this phospholipid contributed to the properties and characterization of epithelial cells.”
The findings from their study have been published in Nature Communications. The paper describes how the team used a battery of analytical techniques including chromatography, mass spectroscopy, immunofluorescence, retroviral expression, and real-time quantitative PCR to confirm that PIP2 plays a critical role in the determination of epithelial identity.
“We saw that epithelial cells lost their properties when PIP2 was depleted from their cell membranes. On the other hand, osteosarcoma cells (which are cancerous, non-epithelial cells) gained epithelial cell-like properties when PIP2 was produced in their plasma membranes.” Says the lead author.
The group was also able to show that PIP2 regulates these epithelial properties by recruiting Par3—a protein which guides vesicles intracellularly—to the plasma membrane. Once in the plasma membrane, Par3 facilitates the formation of adherens junctions (one of the cellular junctions discussed above) which anchor neighboring cells together. This partially prevents EMT, and hence, progression of cancer.
https://www.nature.com/articles/s41467-022-30061-9
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fplasma-membrane&filter=22
Plasma membrane phospholipid plays a key role in epithelial cell adhesion
- 560 views
- Added
Latest News
A new Covid infection mechanism
Connectomic comparison of mouse and human cortex
Intestinal cells and lactic acid bacteria work together to protect against Candida infections
ALS may be linked to both the immune and central nervous systems
Role of urea cycle in Alzheimer's disease
Other Top Stories
Alanine cycling between melanoma and liver
Possible origin of neuroblastoma in the adrenal glands discovered
Suppressing tumor growth by inducing ferroptosis via modulating mitochondrial enzyme
Maintaining peroxisome-mitochondria energy interplay by lipid kinases in cancer
How cancer drug causes permanent hearing loss
Protocols
A behavioral paradigm for measuring perceptual distances in mice
Rapid detection of an Ebola biomarker with optical microring resonators
Engineered AAVs for non-invasive gene delivery to rodent and non-human primate nervous systems
Eosin whole-brain mount staining to analyze neurodegeneration in a fly model of Alzheimer's disease
3D pose estimation enables virtual head fixation in freely moving rats
Publications
Pathogen-sugar interactions revealed by universal saturation transfer analysis
Blood flow meets mitophagy
A brainstem circuit for nausea suppression
Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptation…
The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER