Craniofacial birth defects, including cleft lip and palate, are among the most common human congenital malformations. These craniofacial anomalies occur because of defects in neural crest cells, whose role is to give rise to the complex craniofacial region by generating multiple cell types, including bone, cartilage and the peripheral nervous system.
“Understanding neural crest cell development will allow us to better comprehend and treat those birth defects,” said first author of the work. “In this study, we investigated what made it possible for neural crest cells to differentiate into a large variety of cell types during early development, as this could lead to strategies to generate healthy cells to repair craniofacial defects in human patients.”
“We discovered that neural crest cells have the ability to turn into many different cell types because they have access to multiple developmental programs,” the author said.
Using multiple approaches, the team uncovered that the use of many developmental programs results from chromatin in neural crest cells being more accessible than expected. Chromatin, a combination of genetic material and proteins, not only compacts the genome into the nucleus, but also is used by cells to control how the genome is interpreted to make different cell types.
“Bone cells emerge, for example, when chromatin opens giving access to genes that enable the cells to look like and conduct the functions of bone cells, while compact chromatin keeps other developmental programs leading to other cell types inaccessible,” the author said.
“The transient state in which chromatin is much more accessible enables neural crest cells to activate many genetic programs, which leads to the generation of multiple cell types required to develop the craniofacial region,” said the corresponding author of the work.
The researchers then investigated what mediated the increased accessibility to chromatin in neural crest cells.
Previous evidence had shown that a class of small genetic material known as microRNAs can change cellular identity. “We discovered that changes in chromatin accessibility in neural crest cells are regulated by the miR-302 microRNA family, which is highly expressed in cranial neural crest cells,” the first author said.
Loss of miR-302 leads to reduced chromatin accessibility and a reduction in peripheral neuron differentiation. Mechanistically, the team found that miR-302 mediates the repression of multiple genes involved in chromatin condensation to promote accessibility required for cell differentiation.
“Based on our findings, we hypothesize that disruption of the miR-302 regulatory axis may underlie some human craniofacial and neurological disorders,” the senior author said. “From a basic science point of view, we would like to understand how this microRNA has this remarkable ability to alter developmental potential and chromatin accessibility. This is applicable to any field of stem cell biology.”
“We also see the possibility of translating our findings into clinical applications,” the first author said. “The study has revealed that miR-302 is a powerful tool to modify stem cells to increase their ability to become a variety of cell types. We can potentially apply this ability to regenerate cells of the craniofacial region.”
https://www.pnas.org/doi/10.1073/pnas.2212578120
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fpost-transcriptional_5&filter=22
Post-transcriptional regulation of craniofacial birth defects
- 914 views
- Added
Latest News
How Botox enters the brain…
By newseditor
Posted 04 Jun
Gut microbiome changes link…
By newseditor
Posted 04 Jun
Artificial intelligence sys…
By newseditor
Posted 03 Jun
Deep-brain stimulation duri…
By newseditor
Posted 03 Jun
RNA-guided mechanisms drivi…
By newseditor
Posted 03 Jun
Other Top Stories
Risk for autism in future children can be assessed from fathers spe…
Read more
Accurate, scalable and integrative haplotype estimation
Read more
Genetic risk factors for high alcohol intake identified!
Read more
Gene Regulating Aging of Eye Identified!
Read more
Link between ALS genes identified!
Read more
Protocols
Optical opening of the bloo…
By newseditor
Posted 04 Jun
Protocol to establish a gen…
By newseditor
Posted 03 Jun
Metaboverse enables automat…
By newseditor
Posted 02 Jun
Ratphones: An Affordable To…
By newseditor
Posted 31 May
BigNeuron: A resource to be…
By newseditor
Posted 29 May
Publications
Presynaptic targeting of bo…
By newseditor
Posted 04 Jun
Sleep is required to consol…
By newseditor
Posted 04 Jun
The effects of caloric rest…
By newseditor
Posted 04 Jun
Nuclear lamina erosion-indu…
By newseditor
Posted 04 Jun
Augmenting hippocampal-pref…
By newseditor
Posted 03 Jun
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar