A little mess never killed anyone, right? Wrong. Researchers have recently shown that a build-up of cellular "trash" in the brain can actually cause neurodegeneration, and even death.
Reporting their findings in Nature Communications, the researchers describe how defects in a cellular waste disposal mechanism, called "alternative autophagy", can lead to a lethal build-up of iron and protein in brain cells.
"Cells are constantly clearing out dysfunctional or unnecessary components, which are then degraded and recycled," explains study lead author. "Autophagy is the process whereby unwanted cellular components and proteins are contained within a spherical doubled-membraned vesicle called an autophagosome, which fuses with an enzyme-filled lysosome to form an autolysosome. The waste material is then broken down and reused by the cell."
This common form of autophagy, called "canonical autophagy", is well characterized and involves a suite of autophagy-related proteins, such as Atg5 and Atg7. More recently though, several Atg5-independent alternative autophagy pathways have also been described, the biological roles of which remain unclear.
After identifying alternative autophagy-related proteins in yeast, the team at focused on a mammalian ortholog called "Wipi3", which had previously been implicated in canonical autophagy. "When we deleted Wipi3 in a mouse cell line and induced alternative autophagy, we no longer observed the formation of double-membraned autophagosomes or single-membraned autolysosomes, confirming that Wipi3 is essential for alternative autophagy," says the lead.
Mice containing a brain-specific deletion of Wipi3 demonstrated growth and motor defects most commonly seen in patients with neurodegeneration, with the researchers also noting an accumulation of iron and the iron-metabolizing protein ceruloplasmin in the brain cells of affected mice.
"Iron deposition has been flagged as a possible trigger in various neurodegenerative disorders, and is usually associated with the abnormal accumulation of iron-binding proteins," explains study senior author. "Our findings are strong evidence that alternative autophagy, and Wipi3 specifically, may be essential for preventing this toxic build-up of iron."
Interestingly, although Wipi3-deficient and Atg7 (canonical autophagy)-deficient mice showed similar motor defects, they exhibited very different sub-cellular changes, suggesting that alternative autophagy and canonical autophagy act independently to protect neurons. Supporting this, deletion of both Wipi3 and Atg7 in mice was almost always fatal.
The researchers are hopeful that this research could lead to the development of neuroprotective drugs. Preliminary tests indicate that over-expression of Dram1, another alternative autophagy-associated protein, can reverse the effects of Wipi3 deletion, and may form the basis of future therapies for various neurodegenerative diseases.
http://www.tmd.ac.jp/english/press-release/20201021-1/index.html
https://www.nature.com/articles/s41467-020-18892-w
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fwipi3-is-essential-for&filter=22
Role of alternative autophagy in neurodegeneration
- 714 views
- Added
Edited
Latest News
How non-alcoholic fatty liver disease increases risk of vascular diseases
What happens when plants have stress reactions to touch
Mutation impairs ion channel trafficking in epilepsy
Mutations in a gene could cause a birth defect involving extra fingers or toes
Cornea T cells protecting eyes from viral infections
Other Top Stories
A unique immune cells might restrict the development of Alzheimer's disease
Parkinson's Is Partly An Autoimmune Disease!
Brain-like activity in immune system found!
Cannabinoids generated from omega-fatty acids have anti-inflammatory effects!
New animal models for hepatitis C developed!
Protocols
Prediction of protein-ligand binding affinity from sequencing data with interpretable machine lea…
Integrating neuroimaging and gene expression data using the imaging transcriptomics toolbox
Antibody structure prediction using interpretable deep learning
A semi-automated workflow for brain Slice Histology Alignment, Registration, and Cell Quantificat…
NanoDam identifies Homeobrain (ARX) and Scarecrow (NKX2.1) as conserved temporal factors in the D…
Publications
Bap1/SMN axis in Dpp4 + skeletal muscle mesenchymal cells regulates the neuromuscular system
Endothelial-immune crosstalk contributes to vasculopathy in nonalcoholic fatty liver disease
The lncRNA PILA promotes NF-B signaling in osteoarthritis by stimulating the activity ofthe prot…
Touch signaling and thigmomorphogenesis are regulated by complementary CAMTA3- and JA-dependent p…
Metabolic adaptation of lymphocytes in immunity and disease
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER