Scientists have revealed harmful changes in supporting cells, called astrocytes, in Amyotrophic Lateral Sclerosis (ALS) in two publications in Brain and Genome Research.
ALS, also known as motor neuron disease, is a rapidly progressing degenerative disease of the nervous system, meaning patients suffer loss of strength, speech and eventually the ability to breathe. There are currently no effective treatments and tragically most people die within 3 to 5 years.
When healthy, astrocytes help protect and nurture surrounding motor neurons. However, while recent findings from ALS patients have indicated astrocytes may contribute to the disease, how they go about this remains unclear.
In the first paper, published in Genome Research, the researchers analysed all existing public datasets of astrocytes in ALS, spanning both human and mouse models. Using this meta-analysis approach, they found that in ALS, astrocytes become pro-inflammatory, which is toxic to neighbouring motor neurons.
ALS astrocytes were also found to lose important protective functions, notably the ability to uptake a substance called glutamate. This leads to a build-up of glutamate, which damages motor neurons.
The study lead said: “Our work suggests that treatments for ALS will need to reduce or reverse these damaging changes in astrocytes. These cells are not just innocent bystanders but actively contribute to the progression of the disease.”
In the second study, published in Brain, the researchers found that astrocytes with different ALS-causing genetic mutations also have distinct underlying molecular patterns. This suggests that, during ALS, astrocytes acquire mutation-dependent changes.
As part of their study, the team examined the impact of different mutations known to cause ALS on astrocytes. They observed that in the absence of any neighbouring immune cells, such as microglia, the presence of these mutations alone was sufficient to drive harmful changes in the astrocytes.
The nature of these changes depended on the specific mutations present, suggesting that astrocytes in ALS can appear diverse between different patients. The researchers observed key molecular and functional differences in the cells as a result of the mutation they carried.
However, they also showed that some of these changes converge, which might explain why, in disease, astrocytes have similar characteristics, failing to protect motor neurons from degeneration and increasing inflammation that in turn drives disease.
The study lead said: “The nature and diversity of astrocyte transformation between ALS mutations was not well known. The insight we’ve gained into the different ways this change manifests in early disease could be a helpful starting point in efforts to reverse the cell transformation.”
The co-lead author on both papers said: “We’re now working to understand the biology of the distinct molecular patterns we’re observing and how they converge. Understanding the early astrocyte changes in ALS could provide us with new therapeutic targets.”
While much research into ALS relies on post-mortem samples, where the disease is already well-established, these studies involve growing living cells derived from patients. Master stem cells can be taught to differentiate into any cell from anywhere in the human body, meaning scientists can observe the very earliest cell changes caused by different genetic mutations.
“Our growing understanding of early disease biology is bringing us closer to finding new ways to treat ALS,” says the author. “It’s at the origin of these ‘star’ cells that we might uncover crucial changes that drive the disease.”
https://genome.cshlp.org/content/early/2021/12/28/gr.275939.121
https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awab328/6510848
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fastrocytes-display-cell&filter=22
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fmeta-analysis-of-human&filter=22
Role of astrocytes in Amyotrophic Lateral Sclerosis
- 1,087 views
- Added
Latest News
A new Covid infection mechanism
Connectomic comparison of mouse and human cortex
Intestinal cells and lactic acid bacteria work together to protect against Candida infections
ALS may be linked to both the immune and central nervous systems
Role of urea cycle in Alzheimer's disease
Other Top Stories
Fixing protein production errors lengthens lifespan
How ribosomes are assembled in human cells
Adding chemical tag to transfer RNA!
How pruning the cytoskeleton moves the cell
Protein aggregates on red blood cells as biomarkers of Alzheimer's disease
Protocols
A behavioral paradigm for measuring perceptual distances in mice
Rapid detection of an Ebola biomarker with optical microring resonators
Engineered AAVs for non-invasive gene delivery to rodent and non-human primate nervous systems
Eosin whole-brain mount staining to analyze neurodegeneration in a fly model of Alzheimer's disease
3D pose estimation enables virtual head fixation in freely moving rats
Publications
Pathogen-sugar interactions revealed by universal saturation transfer analysis
Blood flow meets mitophagy
A brainstem circuit for nausea suppression
Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptation…
The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER