A research team has developed a new approach to better understand the biology of polycystic kidney disease (PKD), an often-life-threatening genetic disorder that affects millions worldwide. Scientists combined two ways to model the disorder — organ-in-a-dish and organ-on-a-chip technologies — to show the role of glucose, a sugar commonly found in blood, in forming PKD cysts. The results, reported in Nature Communications, could lead to better ways to test and develop treatments for PKD, and perhaps other diseases.
An organ-in-a-dish, or organoid, is a miniature version of an organ grown in a laboratory dish. It can mimic key features of a human organ’s structure and function. Organs-on-a-chip, or tissue chips, are more complex 3-D models, containing channels and living cells, that aim to mimic organ and tissue structure and environment.
In PKD, tiny tubes (tubules) in the kidneys expand like water balloons, forming sacs of fluid over decades. The sacs, or cysts, eventually crowd out healthy tissue, leading to problems in kidney function and kidney failure. Scientists have identified many of the genes that cause PKD, but much about the disease remains unknown, including how the cysts form.
“We’re able to boil down a complex process of cyst formation in tubules into a process in a petri dish that takes just a few weeks, but there’s been a lack of technologies to study the disease further,” said the research lead. “Animal models are helpful, but translating the results of those studies to people has been a challenge.”
The researchers decided to explore combining organoid technology with a tissue-chip platform. Scientists believe that fluid flow is important in the development of cysts, but they had no way of testing the theory in organoids.
“In kidneys, fluid is always going through the tubules; at any given moment the kidneys have about 25% of the body fluid going through them,” the author explained. “We can’t reproduce this system in the dish because fluid needs to move through the kidney structures. Using microfluidic technology in tissue chips was a natural next step.”
The group showed that exposing the PKD organoid-on-a-chip model to a combination of water, sugar, amino acids and other nutrients caused cysts to expand relatively quickly. They found that the cysts were absorbing glucose and pulling in water from the fluid passing over them, making the cysts grow larger. Although glucose is generally absorbed by the kidneys, glucose absorption has not been connected to cyst formation in PKD.
“It wasn’t a huge surprise that the cysts could absorb glucose, but it was surprising that they were dependent on it. It’s a new way of thinking of how these cysts form,” the author said.
The scientists added fluorescent glucose to mice with PKD and found that the mouse cysts also took up the glucose. “We think the tubules are taking in fluid in the mice, just like in the organoids. The kidney gets bigger, and as the tubules widen to accommodate the expansion over time, cysts form,” the author said.
Understanding the mechanisms of PKD can point to new ways to treat it. As part of the study, the research team showed that adding compounds that block glucose transport prevented cyst growth. Freedman noted glucose inhibitors are being developed for other types of kidney disease.
https://www.nature.com/articles/s41467-022-35537-2
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fglucose-absorption&filter=22
Role of glucose in kidney disease
- 752 views
- Added
Latest News
NAD+ metabolic enzyme's rol…
By newseditor
Posted 09 Jun
Viruses such as SARS-CoV-2…
By newseditor
Posted 09 Jun
A pair of brain regions pro…
By newseditor
Posted 09 Jun
How the gut microbiome resp…
By newseditor
Posted 08 Jun
Noncanonical cleavage mecha…
By newseditor
Posted 07 Jun
Other Top Stories
Breaching brain barriers using lymphatic system to attack tumors
Read more
Heterogeneity of liver cancer cells helps explain tumor progression…
Read more
Gliomas and Neurodegenerative Diseases are Connected?
Read more
The single-cell pathology landscape of breast cancer
Read more
Cancer cells store fat droplets to metastasize
Read more
Protocols
Hardwiring tissue-specific…
By newseditor
Posted 08 Jun
Using mass spectrometry ima…
By newseditor
Posted 07 Jun
Low-threshold, high-resolut…
By newseditor
Posted 05 Jun
Optical opening of the bloo…
By newseditor
Posted 04 Jun
Protocol to establish a gen…
By newseditor
Posted 03 Jun
Publications
Steroid receptor coactivato…
By newseditor
Posted 09 Jun
Taurine linked with healthy…
By newseditor
Posted 09 Jun
SARS-CoV-2 infection and vi…
By newseditor
Posted 09 Jun
Cancer-cell-derived fumarat…
By newseditor
Posted 09 Jun
Green light induces antinoc…
By newseditor
Posted 08 Jun
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar