Zombie cells are the ones that can't die but are equally unable to perform the functions of a normal cell. These zombie, or senescent, cells are implicated in a number of age-related diseases. And with a new letter in Nature, researchers have expanded that list.
In a mouse model of brain disease, scientists report that senescent cells accumulate in certain brain areas prior to cognitive loss. By preventing the accumulation of these cells, they were able to diminish tau protein aggregation, neuronal death and memory loss.
"Senescent cells are known to accumulate with advancing natural age and at sites related to diseases of aging, including osteoarthritis; atherosclerosis; and neurodegenerative diseases, such as Alzheimer's and Parkinson's," says the senior author of the paper. "In prior studies, we have found that elimination of senescent cells from naturally aged mice extends their healthy life span."
In the current study, the team used a model that imitates aspects of Alzheimer's disease.
"We used a mouse model that produces sticky, cobweb like tangles of tau protein in neurons and has genetic modifications to allow for senescent cell elimination," explains first author. "When senescent cells were removed, we found that the diseased animals retained the ability to form memories, eliminated signs of inflammation, did not develop neurofibrillary tangles, and had maintained normal brain mass."
Authors found that the MAPTP301SPS19 mouse model of tau-dependent neurodegenerative disease accumulates p16INK4A-positive senescent astrocytes and microglia. Clearance of these cells as they arise using INK-ATTAC transgenic mice prevents gliosis, hyperphosphorylation of both soluble and insoluble tau leading to neurofibrillary tangle deposition, and degeneration of cortical and hippocampal neurons, thus preserving cognitive function. Pharmacological intervention with a first-generation senolytic modulates tau aggregation.
Also, the team was able to identify the specific type of cell that became senescent, says the senior author.
"Two different brain cell types called 'microglia' and 'astrocytes' were found to be senescent when we looked at brain tissue under the microscope," says the lead author. "These cells are important supporters of neuronal health and signaling, so it makes sense that senescence in either would negatively impact neuron health."
The finding was somewhat surprising, explains the senior author, because at the time their research started, a causal link between senescent cells and neurodegenerative disease had not been established.
"We had no idea whether senescent cells actively contributed to disease pathology in the brain, and to find that it's the astrocytes and microglia that are prone to senescence is somewhat of a surprise, as well," says the senior author.
https://www.nature.com/articles/s41586-018-0543-y
Latest News
Reducing vitamin B5 slows b…
By newseditor
Posted 01 Dec
Mouse brain is 'rewired' du…
By newseditor
Posted 01 Dec
How formaldehyde affects ep…
By newseditor
Posted 30 Nov
Distinct brain activity tri…
By newseditor
Posted 30 Nov
AI based histologic biomark…
By newseditor
Posted 30 Nov
Other Top Stories
Controlling calcium channel bursts to regulate anxiety-like behavior
Read more
Regulating mitochondrial fission!
Read more
How the brain tries to control blood loss
Read more
Why do we lose muscle mass when physical activity levels decline?
Read more
Brain's striatal neurons that help with decision-making
Read more
Protocols
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Microfluidic-based skin-on-…
By newseditor
Posted 28 Nov
Biology-guided deep learnin…
By newseditor
Posted 26 Nov
Publications
Vitamin B5 supports MYC onc…
By newseditor
Posted 01 Dec
Longitudinal evolution of d…
By newseditor
Posted 01 Dec
Pre-RNA splicing in metabol…
By newseditor
Posted 01 Dec
Pleiotrophin ameliorates ag…
By newseditor
Posted 30 Nov
Mitf is a Schwann cell sens…
By newseditor
Posted 30 Nov
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar