Delta opioid receptors have a built-in mechanism for pain relief and can be precisely targeted with drug-delivering nanoparticles--making them a promising target for treating chronic inflammatory pain with fewer side effects, according to a new study from an international team of researchers. The study, published in Proceedings of the National Academy of Sciences (PNAS), was conducted using cells from humans and mice with inflammatory bowel disease, which can cause chronic pain.
Opioid receptors--which are primarily located throughout the central nervous system and gut--relieve pain when they are activated by opioids, both those naturally produced by the body and those taken as medications. While there are several types of opioid receptors, the majority of opioid medications like oxycodone and morphine act on the mu opioid receptor. Opioid medications have significant side effects mediated by the mu opioid receptor, including constipation and difficulty breathing. These drugs are addictive and their effectiveness diminishes over time, so people require higher doses to manage their pain, leading to increased side effects and risk of overdose.
In this study, the researchers focused on a different opioid receptor: the delta opioid receptor, which also inhibits pain when activated but offers a promising target for treating pain with fewer side effects. Using biopsies from the colons of people and mice with ulcerative colitis, an inflammatory bowel disease, the researchers discovered that the delta opioid receptor provides a built-in mechanism to relieve inflammatory pain. The inflammatory cells from the colon release their own opioids, which activate the delta opioid receptor and block the activity of neurons in the gut that transmit painful signals.
Importantly, the researchers also learned that the delta opioid receptor signals from a compartment within the cell called an endosome--not just at the surface of cells, as previously thought. In the endosome, receptors signal for prolonged periods, which means delta opioid receptors can inhibit pain for longer stretches. This sustained decrease in excitability (a measurement of pain) was found when the delta opioid receptors were activated in the inflammatory cells studied. Delta opioid receptor endocytosis and endosomal signaling by protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) pathways mediated the sustained inhibitory actions of endogenous opioids and delta opioid receptor agonists. The agonists stimulated the recruitment of Gαi/o and β-arrestin1/2 to endosomes. Analysis of compartmentalized signaling revealed a requirement of delta opioid receptor endocytosis for activation of PKC at the plasma membrane and in the cytosol and ERK in the nucleus.
"We've shown that the delta opioid receptor has a built-in mechanism of pain control and inhibits pain by signaling within an endosome. With this new knowledge, we thought the receptor would be a promising target for the treatment of chronic inflammatory pain," said senior author.
To target the delta opioid receptor, the researchers encapsulated a painkiller called DADLE, which binds to the delta opioid receptor, inside nanoparticles--microscopic vehicles used to deliver drugs to cells. They then coated the nanoparticles with the same painkiller, which steered the nanoparticles specifically to nerve cells that control pain and away from other cell types, avoiding side effects.
"Incorporating drugs into nanoparticles can enhance the stability and delivery of drugs, improving their effectiveness and often requiring smaller doses--and smaller, more targeted doses lower the risk of drugs causing unwanted side effects," said the author.
After binding to the receptors of nerve cells, the nanoparticles entered the cells to reach the endosome and then slowly released the painkiller to activate the delta opioid receptor. This resulted in a long-lasting activation of the delta opioid receptor, suggesting a sustained ability to inhibit inflammatory pain.
"Our findings demonstrate that not only are delta opioid receptors in endosomes a built-in mechanism for pain control, but also a viable therapeutic target for relief from chronic inflammatory pain," said the author.
A previous study by the authors used nanoparticles to deliver a drug that blocked a different type of receptor to relieve pain, while the PNAS study focuses on delivering a drug to activate the delta opioid receptor. The researchers hypothesize that effective pain control will involve blocking and activating multiple pain-transmitting pathways at the same time, which may lead to encapsulating a combination of drugs inside nanoparticles.
https://www.pnas.org/content/early/2020/06/15/2000500117
Targeting endosomal delta opioid receptor with drug coated nanoparticles to relieve inflammatory pain
- 533 views
- Added
Edited
Latest News
Brain signaling disrupted by plasticisers
Histone chaperones and molecular chaperones combine to protect histone proteins on route to chrom…
Why snoring and disrupted sleep are associated with behavioral problems in children?
Pregnancy-associated breast cancer linked to inflammation
DNA supercoiling controls gene expression
Other Top Stories
Watching neuronal development
Machine learning to identify autism blood biomarkers
A novel method to better detect the circulating tumor cells (CTCs)
Novel C-to-G Base Editor (CGBE) to correct disease-causing mutations
A computational tool to optimize cellular differentiation
Protocols
Protocol for brain-wide or region-specific microglia depletion and repopulation in adult mice
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
Publications
Bisphenols exert detrimental effects on neuronal signaling in mature vertebrate brains
DNAJC9 integrates heat shock molecular chaperones into the histone chaperone network
Mitochondria: new players in homeostatic regulation of firing rate set points
The emerging association between COVID-19 and acute stroke
Antiviral drug screen identifies DNA-damage response inhibitor as potent blocker of SARS-CoV-2 re…
Presentations
Neural Networks
MicroRNA
Multiple Sclerosis
BASIC PRINCIPLES OF IMMUNOTHERAPY
Cell Organelles and their Functions
Posters
Lymphangiogenesis-inducing vaccines to treat melanomas
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE