The brain cells collect damaged lipids secreted by hyperactive neurons, then recycle those toxic molecules into energy, researchers report in the journal Cell. It's a mechanism to protect neurons from the damaging side effects of overactivity. And it's another important role for astrocytes, which support neurons in various ways.
When a neuron fires fast and furious, lipid molecules in the cell get damaged and can become toxic. While most kinds of cells sequester excess fatty acids away or feed them to mitochondria to prevent buildup, neurons don't seem to rely on those tricks.
Instead, "neurons unload some of the burden to astrocytes," says study co- senior author. "For a long time, people have suspected there was some mechanism like this. The new work shows how this process actually happens."
The finding arose from a curious observation: Overactive neurons release damaged fatty acids bundled up in lipid particles. "People didn't think that neurons could secrete those lipid particles," the co-senior author says.
But stimulating mouse neurons in a dish led to the buildup of fatty acids and, eventually, lipid particle release, the team showed. Then, nearby astrocytes engulfed the particles and amped up the activity of genes involved in energy production and detoxification.
Astrocytes feed neurons' off-loaded damaged lipids to their own mitochondria, converting waste into energy, the co-senior author concluded. Tests in mice showed a similar response. After a lesion to the brain that mimics a stroke - a huge stress to neurons - neurons increased production of proteins involved in transporting fatty acids out of the cell, and fatty acids built up in astrocytes.
This pathway for clearing toxic molecules from neurons might be damaged in Alzheimer's patients, the co-author proposes, though that hasn't been thoroughly investigated. A next step, is to examine what's different about this mechanism in cell culture and rodent models of Alzheimer's disease.
https://www.janelia.org/news/astrocytes-protect-neurons-from-toxic-buildup
https://www.cell.com/cell/fulltext/S0092-8674(19)30387-3
Latest News
Fast, fully automated software constructs accurate models of protein structure
Plasma MT-DNA test identifies COVID-19 patients at high risk of severe disease
Restricted diet and glucose uptake in the brain lead to longer life
Pixelated chemical displays offer versatile liquid handling
Cells mechanical forces linked to immune system
Other Top Stories
Why do people respond differently to the same drug?
Brain's immune cells put the brakes on neurons
Reference atlas of small noncoding RNAs in mouse tissues
Gene expression altered by direction of forces acting on cell
Reducing lignin levels in plants using CRISPR
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
Expert programmers have fine-tuned cortical representations of source code
Cellular, molecular, and clinical mechanisms of action of deep brain stimulation–a systematic rev…
DeepTracer for fast de novo cryo-EM protein structure modeling and special studies on CoV-related…
Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19
Neural correlates of shared sensory symptoms in autism and attention-deficit/hyperactivity disorder
Presentations
Homeostasis
PLANT MITOCHONDRIAL BIOLOGY
Photosynthesis
Endocrine Disorders
THE PITUITARY GLAND
Posters
ACMT 2020 Annual Scientific Meeting Abstracts - New York, NY
Abstracts from the 2020 Annual Scientific Meeting of the British and Irish Hypertension Society (…
ACNP 58th Annual Meeting: Poster Session III
ACNP 58th Annual Meeting: Poster Session II
ACNP 58th Annual Meeting: Poster Session I