A team of researchers is attempting to answer a question that has long puzzled experts: Why do some individuals suffer post-traumatic stress disorder (PTSD) after experiencing trauma, and others do not? The research explores whether individual vulnerability to PTSD is due to pre-existing conditions or to a response to trauma exposure.
The team used the predator scent model of PTSD in rats and longitudinal design, which involves repeated observations of the same subject over a period of time. Using this methodology, they measured pre-trauma, brain-wide, neural circuit functional connectivity; behavioral responses to trauma exposure; release of corticosterone, a steroidal hormone produced in the cortex of adrenal glands; and post-trauma anxiety.
The results, reported in a recent issue of Nature Communications, found that rats that freeze and become motionless in response to predator scent exposure, correlate with functional connectivity in a set of neural circuits in the brain of these rats. Functional connectivity is the connectivity between different regions of the brain that share functional properties, and is measured via magnetic resonance imaging.
The researchers found that pre-existing neural circuit function can predispose animals to different fearful responses to threats.
"The data we gathered provides a framework of pre-existing circuit function in the brain that determines threat responses," the senior author said. "This may directly relate to PTSD-like behaviors."
Such a framework has a variety of potential benefits for further research into PTSD prevention and treatment.
"This research can help us understand core components of the vulnerability to stress-induced neuropsychiatric disorders," the senior author said. "These components can potentially serve as indicators to not only predict risk for developing anxiety disorders like PTSD but also assist in evaluating different stages of PTSD and possible recovery."
Using rats as test subjects helped overcome a major obstacle of investigating risk factors of PTSD in humans -- the difficulty of monitoring PTSD development from pre- through post- trauma in humans via exposure to well-controlled traumatic events. Studies on humans focus on populations already exposed to a variety of uncontrolled traumatic events and can lead to inconsistent results. Such barriers were overcome in the present study by using rats and applying longitudinal design with controlled traumatic stressors.
"The outcomes of the research can potentially be translated to human studies," the senior author said. "For instance, a biomarker predicting a vulnerability to stress-induced disorders will help determine the risk of assigning an individual to a highly stressful environment, such as combat."
One interesting aside in the study was a counterintuitive finding. Rats with lower freezing behavior showed more avoidance of the predator scent, a prolonged corticosterone response, and higher anxiety long after exposure to the scent.
"It is very likely that they froze less as they adopted different reactions to threats, such as fleeing," the senior author said.
The next steps for the research team include identifying neuroimaging biomarkers that can predict an individual's response to threats and developing a process for determining the probability an individual will develop PTSD-like behaviors when exposed to trauma. The team will also explore methods to protect animals with high-risk factors from developing PTSD-like behaviors, such as through optogenetics, which is the use of light to control the activities of individual neurons in freely moving animals.
https://news.psu.edu/story/578832/2019/06/25/research/researchers-look-unlock-post-traumatic-stress-disorder-puzzle
https://www.nature.com/articles/s41467-019-09926-z
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Findividual-variability_2&filter=22
Latest News
Multi-chamber heart organoi…
By newseditor
Posted 29 Nov
A key protein for healthy a…
By newseditor
Posted 29 Nov
Connections between neuroin…
By newseditor
Posted 29 Nov
Fat cells help repair damag…
By newseditor
Posted 29 Nov
Brain link between stress a…
By newseditor
Posted 28 Nov
Other Top Stories
Activation of a glycolytic enzyme in the metastasis of pancreatic c…
Read more
Why many cancer cells need to import fat
Read more
Activation of hippo pathway restrains tumor growth in melanoma cells
Read more
Role of glutaminase in lung cancer
Read more
Hereditary factors that increase the likelihood of cancer mutations
Read more
Protocols
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Microfluidic-based skin-on-…
By newseditor
Posted 28 Nov
Biology-guided deep learnin…
By newseditor
Posted 26 Nov
Accurate prediction of prot…
By newseditor
Posted 25 Nov
The Brainbox–a tool to faci…
By newseditor
Posted 24 Nov
Publications
Aberrant axon initial segme…
By newseditor
Posted 29 Nov
CD300f immune receptor cont…
By newseditor
Posted 29 Nov
Genetic studies of paired m…
By newseditor
Posted 29 Nov
INPP5D regulates inflammaso…
By newseditor
Posted 29 Nov
Molecular annotation of G p…
By newseditor
Posted 29 Nov
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar