Several hypotheses are dedicated to the Alzheimer's disease development. One of the most common is the so-called amyloid hypothesis.
Amyloids (to be precise, beta-amyloid peptides) are molecular constructions of a protein type and in its normal healthy state they provide a protection to the brain cells. They live fast, and having fulfilled their function they fall prey to the work of proteases, the cleaning enzymes that cut all the used protein elements into harmless 'slags' that are further reclaimed or removed from a body.
However, according to the amyloid hypothesis, at some point something goes wrong, and the cells' protectors turn to be their killers. Moreover, those peptides start gathering, forming aggregations and hence getting out of the reach of proteases' cutting blades. Within the amyloid hypothesis this mechanism is more or less precisely described on the later stages of the disease, when the toxic aggregations appeared already and further, when the brain is covered with amyloid plaques. However, the early stage of a beta-amyloid transformation into harmful organic products is highly unexplored.
'We knew, for example, that a crucial role in initiation of such processes is played by ions of several transition metals, first of all -- zinc,' tells the author. 'Zinc actually conducts a number of useful and healthy functions in a brain, though in this case it was reasonably suspected as a 'pest', and particularly as an initiator of a cascade of processes, leading to the Alzheimer'sdisease. However, it remained unclear, what exactly happens during an interaction of zinc ions with peptide molecules, which amino acids bind zinc ions, and how such interaction stipulates a peptide aggregation.
One of the specimens was the product of so-called 'English mutation' -- peptide, different from a common beta-amyloid peptide only with one amino acid substitution. The second pathogen was an isomerized beta-amyloid peptide. It was not different from a normal one in its chemical composition, though one of its amino acid residues, aspartic acid, was in a form with a specific atomic positioning. Such isomerism happens spontaneously, without help of any enzymes, and is related to the ageing processes, another influential factor of the Alzheimer's disease.
The administration of an isomerized peptide to transgenic mice led to an accelerated formation of amyloid plaques. With the presence of zinc ions, a metal binding domain of the isomerized peptide aggregated so fast that the forming structures were hard to detect. Though scientists managed to distinguish that despite all the differences in processes occurring to the 'English mutant' and isomerized peptide in presence of zinc ions, initial stages of these transformations were similar.
The trigger happened to be the same -- a role of a pathogenic aggregation's seed was in both cases played by initially formed peptide dimers, i.e. two peptide molecules, connected to each other with help of zinc ion. Such dimers were also detected in normal human peptides, and the difference in all the studied forms could be explained by the speed of formation of corresponding dimer and its proneness to a further aggregation.
Based on their findings, researches proposed the mechanism of zinc-controlled transformation of a peptide-protector into a peptide-killer. That mechanism, scientists notice, explains multiple experimental data, not only gathered by the group, but also collected by their colleagues in other laboratories preoccupied with the Alzheimer's disease studies.
http://www.msu.ru/science/main_themes/uchenye-nashli-spuskovoy-kryuchok-bolezni-altsgeymera.html
Trigger for Alzheimer's disease found!
- 1,474 views
- Added
Edited
Latest News
Repairing nerve cells after…
By newseditor
Posted 30 Nov
A gene regulating fat stora…
By newseditor
Posted 30 Nov
Leveraging CRISPR to target…
By newseditor
Posted 30 Nov
Multi-chamber heart organoi…
By newseditor
Posted 29 Nov
A key protein for healthy a…
By newseditor
Posted 29 Nov
Other Top Stories
The phytotoxin fusicoccin to repair damaged axons
Read more
Transgenic plants against malaria
Read more
Method to unravel gene networks involved in metabolite (drug) synth…
Read more
Gene that helps plant grow under iron deficient conditions identified!
Read more
Manipulating gene interactions for higher tomato yields
Read more
Protocols
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Microfluidic-based skin-on-…
By newseditor
Posted 28 Nov
Biology-guided deep learnin…
By newseditor
Posted 26 Nov
Accurate prediction of prot…
By newseditor
Posted 25 Nov
The Brainbox–a tool to faci…
By newseditor
Posted 24 Nov
Publications
Mitf is a Schwann cell sens…
By newseditor
Posted 30 Nov
OsHLP1 is an endoplasmic-re…
By newseditor
Posted 30 Nov
Probiotic treatment with Bi…
By newseditor
Posted 30 Nov
Metabolic immunity against…
By newseditor
Posted 30 Nov
HSP47 levels determine the…
By newseditor
Posted 30 Nov
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar