A gene encoding a protein linked to tau production—tripartite motif protein 11 (TRIM11)—was found to suppress deterioration in small animal models of neurodegenerative diseases similar to Alzheimer’s disease (AD), while improving cognitive and motor abilities, according to new research. Additionally, TRIM11 was identified as playing a key role in removing the protein tangles that cause neurodegenerative diseases, like AD. The findings are published in Science.
AD is the most common cause of dementia in older adults, with an estimated 6 million Americans currently living with the disease. It is a progressive brain disorder that slowly destroys memory and thinking skills. The researchers reveal that one of the underlying causes of neurodegenerative diseases is neurofibrillary tangles (NFTs) of tau proteins, which cause the death of neurons, leading to the symptoms of AD, like loss of memory.
In addition to AD, aggregation of tau proteins into NFTs is associated with over 20 other dementias and movement disorders including progressive supranuclear palsy, Pick’s disease, and chronic traumatic encephalopathy, collectively known as tauopathies. Nevertheless, how and why tau proteins clump together and form the fibrillar aggregates that make up NFTs in patients with these diseases remains unclear. This major gap in knowledge has made the development of effective therapies challenging for researchers.
“Most organisms have protein quality control systems that remove defective proteins, and prevent the mis-folding and accumulation of tangles—like the ones we see with tau proteins in the brain of those with taupathies— but until now we didn’t know how this works in humans, or why it malfunctions in some individuals and not others,” said the senior author. “For the first time, we have identified the gene that oversees tau function, and have a promising target for developing treatments to prevent and slow the progression of Alzheimer’s disease and other related disorders.”
The team previously found that TRIM proteins play an important role in protein quality control in animal cells. After examining over 70 human TRIMs, they found that TRIM11 has a major role in suppressing tau aggregation. TRIM11 possesses three main functions related to the quality control of tau proteins. First, it binds to tau proteins, especially the mutant variants that cause disease, and helps eliminate them. Second, it acts as a “chaperone” for tau, preventing the proteins from mis-folding. Finally, TRIM11 dissolves pre-existing tau aggregates.
Using postmortem brain tissues of 23 individuals with AD and 14 health controls, the researchers validated these findings, and found that levels of TRIM11 protein are substantially reduced in the brains of individuals with AD, compared to healthy control individuals.
To determine the potential utility of TRIM11 as a therapeutic agent, researchers used adeno-associated viral vector (AAV), a tool commonly used in gene therapy, to deliver the TRIM11 gene into the brain of multiple mouse models. Researchers found that mice with tau pathologies receiving the TRIM11 gene exhibited a marked decrease in the development and accumulation of NFTs, and had much improved cognitive and motor abilities.
“Not only do these findings tell us that TRIM11 could play an important role in protecting people from Alzheimer’s and similar diseases, but we also see that we might be able to develop future therapies that replenish TRIM11 in individuals with lower levels,” said the author. “We are eager to work with our colleagues to explore the possibility of developing gene therapies that halt the progression of neurodegenerative disease.”
https://www.science.org/doi/10.1126/science.add6696
TRIM11 protects against tauopathies
- 1,806 views
- Added
Latest News
Damage to brain's 'control…
By newseditor
Posted 14 Oct
Special immune cells stop m…
By newseditor
Posted 14 Oct
New mutation linked to earl…
By newseditor
Posted 08 Oct
Mechanism of GSDMD pore for…
By newseditor
Posted 08 Oct
How are pronouns processed…
By newseditor
Posted 07 Oct
Other Top Stories
Could vitamin B3 treat acute kidney injury?
Read more
MicroRNA (miRNA) misregulation in Huntington's disease
Read more
'Hearing' protein identified!
Read more
A brain protein controls body's energy rheostasis
Read more
Link between aging and neurodegeneration found!
Read more
Protocols
Mapping protein-DNA interac…
By newseditor
Posted 09 Oct
Use of synthetic circular R…
By newseditor
Posted 06 Oct
The gut-brain axis in depre…
By newseditor
Posted 04 Oct
Droplet-based functional CR…
By newseditor
Posted 03 Oct
Multi-peptide characterizat…
By newseditor
Posted 24 Sep
Publications
Quantitative susceptibility…
By newseditor
Posted 14 Oct
BCAS1-positive oligodendroc…
By newseditor
Posted 14 Oct
The transcription regulator…
By newseditor
Posted 14 Oct
Does glial lipid dysregulat…
By newseditor
Posted 09 Oct
The Nobel Prize in Chemistr…
By newseditor
Posted 09 Oct
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar