The CB2 receptor is part of the endocannabinoid system (ECS). This family of receptors and signaling substances exists in many organisms including humans. It is a biochemical control system which is involved in the regulation of numerous physiological processes. Its name refers to the fact that chemicals derived from the cannabis plant bind to receptors of the ECS. So far, there are two known types of these receptors: The CB2 receptor has no psychoactive effect. Hence, the mind-altering effects triggered by the consumption of cannabis are ascribed to the "cannabinoid type 1 receptor".
"Until now, this receptor was considered part of the immune system without function in nerve cells. However, our study shows that it also plays an important role in the signal processing of the brain," explains senior author of the study published in the journal Neuron.
As the researchers demonstrated in an animal model, the CB2 receptor raises the excitation threshold of nerve cells in the hippocampus. They found that action potential-driven (endocannabinoids) eCB release leads to a long-lasting membrane potential hyperpolarization in hippocampal principal cells that is independent of CB1Rs.
The hyperpolarization, which is specific to CA3 and CA2 pyramidal cells (PCs), depends on the activation of neuronal CB2Rs, as shown by a combined pharmacogenetic and immune-histochemical approach. Upon activation, they modulate the activity of the sodium-bicarbonate co-transporter, leading to a hyperpolarization of the neuron. CB2R activation occurred in a purely self-regulatory manner, robustly altered the input/output function of CA3 PCs, and modulated gamma oscillations in vivo.
The results of the current study could contribute to a better understanding of disease mechanisms and provide a starting point for novel medications. "Brain activity is disturbed in schizophrenia, depression, Alzheimer's disease and other neuropsychiatric disorders. Pharmaceuticals that bind to the CB2 receptor could possibly influence the activity of brain cells and thus become part of a therapy," author concludes.
http://www.dzne.de/en/about-us/public-relations/meldungen/2016/pressemitteilung-nr-6.html
Latest News
A gene regulating fat stora…
By newseditor
Posted 30 Nov
Leveraging CRISPR to target…
By newseditor
Posted 30 Nov
Multi-chamber heart organoi…
By newseditor
Posted 29 Nov
A key protein for healthy a…
By newseditor
Posted 29 Nov
Connections between neuroin…
By newseditor
Posted 29 Nov
Other Top Stories
Exosome deliver RNAi to rescue addiction
Read more
Men have better sense of direction than women
Read more
Children with common allergies have twice heart disease risk
Read more
Vitamin D and its receptor supports myelin regeneration
Read more
Reversing liver fibrosis
Read more
Protocols
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Microfluidic-based skin-on-…
By newseditor
Posted 28 Nov
Biology-guided deep learnin…
By newseditor
Posted 26 Nov
Accurate prediction of prot…
By newseditor
Posted 25 Nov
The Brainbox–a tool to faci…
By newseditor
Posted 24 Nov
Publications
HSP47 levels determine the…
By newseditor
Posted 30 Nov
Targeting the non-coding ge…
By newseditor
Posted 30 Nov
Aberrant axon initial segme…
By newseditor
Posted 29 Nov
CD300f immune receptor cont…
By newseditor
Posted 29 Nov
Genetic studies of paired m…
By newseditor
Posted 29 Nov
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar