A molecule produced during fasting or calorie restriction has anti-aging effects on the vascular system, which could reduce the occurrence and severity of human diseases related to blood vessels, such as cardiovascular disease, according to a study published in the journal Molecular Cell.
"As people become older, they are more susceptible to disease, like cancer, cardiovascular disease and Alzheimer's disease," said the senior author of the study. "Age is the most important so-called risk factor for human disease. How to actually delay aging is a major pathway to reducing the incident and severity of human disease.
"The most important part of aging is vascular aging. When people become older, the vessels that supply different organs are the most sensitive and more subject to aging damage, so studying vascular aging is very important. This study is focused on vascular aging, and in old age, what kind of changes happen and how to prevent vascular aging."
In this study, the research team explores the link between calorie restriction (eating less or fasting) and delaying aging, which is unknown and has been poorly studied. The researchers identified an important, small molecule that is produced during fasting or calorie restriction conditions. The molecule, β-Hydroxybutyrate, is one type of a ketone body, or a water-soluble molecule that contains a ketone group and is produced by the liver from fatty acids during periods of low food intake, carbohydrate restrictive diets, starvation and prolonged intense exercise.
"We found this compound, β-Hydroxybutyrate, can delay vascular aging," the senior author said. "That's actually providing a chemical link between calorie restriction and fasting and the anti-aging effect. This compound can delay vascular aging through endothelial cells, which line the interior surface of blood vessels and lymphatic vessels. It can prevent one type of cell aging called senescence, or cellular aging."
Senescent cells can no longer multiple and divide. The researchers found β-Hydroxybutyrate can promote cell division and prevent these cells from becoming old. Because this molecule is produced during calorie restriction or fasting, when people overeat or become obese this molecule is possibly suppressed, which would accelerate aging.
In addition, the researchers found when β-Hydroxybutyrate binds to a certain RNA-binding protein, this increases activity of a stem cell factor called Octamer-binding transcriptional factor (Oct4) in vascular smooth muscle and endothelial cells in mice. Oct4 increases a key factor against DNA damage-induced senescence, which can keep blood vessels young.
"We think this is a very important discovery, and we are working on finding a new chemical that can mimic the effect of this ketone body's function," the senior author said. "We're trying to take the global approach to reducing cardiovascular disease and Alzheimer's disease. It's difficult to convince people not to eat for the next 24 hours to increase the concentration of this compound (β-Hydroxybutyrate), and not everybody can do that, but if we can find something that can mimic this effect and people can still eat, it would make life more enjoyable and help fight disease.
"This stem cell factor (Oct4) could be a pharmaceutical or pharmacological target for slowing down or preventing aging. Then, if the vascular system becomes younger, it is less likely to have cardiovascular disease, Alzheimer's disease and cancer because all of these diseases are age-related."
In the future, the researchers would like to target senescent cells with the goal of eliminating them and rejuvenating the vascular system to prevent cardiovascular disease.
https://news.gsu.edu/2018/09/10/researchers-identify-molecule-with-anti-aging-effects-on-vascular-system-study-finds/?utm_source=press-release&utm_medium=media&utm_campaign=anti-aging
https://www.cell.com/molecular-cell/fulltext/S1097-2765(18)30605-1
Vascular anti-aging molecule identified
- 1,648 views
- Added
Edited
Latest News
Epigenetic mitochondrial DN…
By newseditor
Posted 11 Sep
GlycoRNA on the cells ident…
By newseditor
Posted 11 Sep
The role of an energy-produ…
By newseditor
Posted 11 Sep
Linking gut microbial pathw…
By newseditor
Posted 10 Sep
Compound in rosemary extrac…
By newseditor
Posted 10 Sep
Other Top Stories
Toothpaste ingredient may help fight drug-resistant malaria
Read more
Placental dysfunction in monkeys infected with Zika virus
Read more
New flu vaccine in the making
Read more
Leprosy's drug resistance and origin revealed by genome analysis
Read more
Trying to fight the tooth decay with slow release material
Read more
Protocols
Fully defined NGN2 neuron p…
By newseditor
Posted 10 Sep
Clinical utility of a blood…
By newseditor
Posted 06 Sep
A glia-enriched stem cell 3…
By newseditor
Posted 01 Sep
Mouse models to investigate…
By newseditor
Posted 30 Aug
A brief guide to studying e…
By newseditor
Posted 28 Aug
Publications
A homeostatic gut-to-brain…
By newseditor
Posted 11 Sep
Phosphoglycerate kinase is…
By newseditor
Posted 11 Sep
A systems view of the vascu…
By newseditor
Posted 10 Sep
Cancer cell metabolism and…
By newseditor
Posted 10 Sep
Gut microbe-generated pheny…
By newseditor
Posted 10 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar