A powerful class of antibiotics called carbapenems can circumvent antibiotic resistance thanks to a particular chain of atoms in their structure. Now, a team of researchers have imaged an enzyme involved in the creation of this chain to better understand how it forms — and perhaps replicate the process to improve future antibiotics. A paper describing the process appears in the journal Nature.
Carbapenems are naturally occurring potent, broad-spectrum antibiotics that belong to a larger group called beta-lactam antibiotics that also includes penicillin. Carbapenems are often used as a last resort to treat bacterial infections, including hospital-acquired and ventilator-associated bacterial pneumonia — an increasing problem during the COVID-19 pandemic. Certain carbapenems have a side chain that includes two or three methyl groups — a carbon atom and three hydrogen atoms — that help them thwart antibiotic resistance.
“In many cases, bacteria can evolve resistance to beta-lactam antibiotics by degrading a structure in the antibiotic called the ‘beta-lactam ring,’ which renders it ineffective,” said an author of the paper. “But the addition of the methyl groups in the side chain prevents this degradation, making carbapenems powerful clinical tools. In this study, we imaged a protein called TokK that we know facilitates the synthesis of the side chain in order to reconstruct the initial chemical steps in this process.”
TokK is a type of radical SAM (S-adenosylmethionine) enzyme that is involved in the process of methylation — adding a methyl group. In this case, TokK helps facilitate the addition of three methyl groups to the antibiotic, building the side chain that is so critical in this antibiotic.
The researchers found that, like most radical SAM enzymes, TokK first uses one if its iron-sulfur clusters to convert a SAM molecule into a “free radical”, which propels the reaction forward. The radical then takes a hydrogen atom from the under-construction antibiotic. TokK then donates a methyl group from a part of its structure called methyl-cobalamin to the vacant spot on the antibiotic where the hydrogen was removed. This methylation process is repeated three times, ultimately producing the side chain with three methyl groups.
“TokK acts like a scaffold in this process, bringing together the methyl-cobalamin, a SAM molecule, and the antibiotic into an ideal position for transfer of the methyl group to occur,” said another author of the paper. “The second methyl group is actually attached much more quickly than we would expect based on the energetics. We think that this is because the components are already so well aligned from the first step.”
Cobalamin, also known as vitamin B12, helps facilitate a variety of enzyme-driven reactions. However, this type of “radical chemistry” is uncommon in known reactions where cobalamin is involved, suggesting that cobalamin may play a different role than anticipated in many reactions.
“Typically, we think of methylcobalamin as being involved in what we call ‘polar chemistry’ rather than ‘radical chemistry,’” said the author. “But here we found that TokK, and we think many other cobalamin-dependent radical SAM enzymes, use radical chemistry. It turns out that cobalamin is much more versatile than we had previously appreciated.”
This improved understanding of how the side chain in carbapenems is created could provide important insight for how to replicate this process and potentially improve antibiotics.
“Multiple methylations by a radical SAM enzyme are unusual, although not unprecedented, and have created a ‘library’ of two- and three-carbon variants of the carbapenem core in nature,” said another author of the paper. “Two methyl groups may be optimal for antibiotic activity, but one wonders if engineering of TokK to incorporate four or more of these groups could lead to further improvements in the running battle against bacterial resistance.”
https://www.nature.com/articles/s41586-021-04392-4
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fstructure-of-a-b12&filter=22
Vitamin B12-dependent methyl group addition to carbapenems to circumvent antibiotic resistance
- 1,174 views
- Added
Latest News
When do brains grow up?
By newseditor
Posted 11 Dec
First map of human limb dev…
By newseditor
Posted 11 Dec
Predicting organ aging by a…
By newseditor
Posted 11 Dec
Map of disease-causing muta…
By newseditor
Posted 11 Dec
Linking gene network and pa…
By newseditor
Posted 09 Dec
Other Top Stories
Role of nonsense-mediated mRNA decay (NMD) in fragile X-syndrome
Read more
A signaling molecule that potently stimulates hair growth
Read more
New pathway for accumulation of age-promoting 'zombie cells'
Read more
How EGF receptor sends signals into cells
Read more
Endogenous receptor surface mobility during synaptic plasticity and…
Read more
Protocols
AA2P-mediated DNA demethyla…
By newseditor
Posted 09 Dec
Brain-wide circuit-specific…
By newseditor
Posted 05 Dec
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Publications
Atlas of fetal metabolism d…
By newseditor
Posted 11 Dec
Isochronic development of c…
By newseditor
Posted 11 Dec
Organ aging signatures in t…
By newseditor
Posted 11 Dec
Saturation genome editing o…
By newseditor
Posted 11 Dec
Integrating direct electric…
By newseditor
Posted 10 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar